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Nonlinear Chemical Dynamics and
Belousov-Zhabotinski Reaction
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Brusselator

Brusselator models the dynamics of the concentration of
two chemicals in an autocatalytic reaction.

d
dtu = a − (b + 1)u + u2v

d
dtv = bu − u

2v

Prigogine, R. Lefever (1968) ”Symmetry Breaking
Instabilities in Dissipative Systems II”, J. Chem. Phys. 48,
1695-1700.
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Brusselator reaction-diffusion

When diffusion is added into the picture, Brusselator
system captures some characteristics (qualitatively) of
Belousov-Zhabotinski Reaction.

ut = γ[a − (b + 1)u + u2v] + uxx

vt = γ[bu − u
2v] + dvxx

x ∈ (0, L), t > 0, BCs
u: concentration of the activator
v: concentration of the inhibitor
γ: reaction-to-diffusion ratio
d: inhibitor-to-activator ratio
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Equilibrium

d
dtu = f(u, v) = a − (b + 1)u + u2v

d
dtv = g(u, v) = bu − u

2v

The equilibrium point of the original ODE system is
(u∗, v∗) = (a,

b

a
).

We can linearize the system near this point
(ξ, η) = (u − u∗, v − v∗)

(
d
dtξ
d
dtη

) = (
fu fv
gu gv

)(
ξ
η
)
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Linearized system with diffusion

When diffusion is taken into account, we have

(
d
dtξ
d
dtη

) = γ (
fu fv
gu gv

)(
ξ
η
) + (

1 0
0 d

)(
d2

dx2 ξ
d2

dx2η
)

Assume the solution takes the form of ∑ ckeλkteikπx/L.
eikπx/L are time-invariant spatial modes of spatial frequency
k. Considering each mode individually, we have

λk (
ξk
ηk

) = γ (
fu fv
gu gv

)(
ξk
ηk

) − (
kπ

L
)

2

(
1 0
0 d

)(
ξk
ηk

)

(k is subscript not partial)
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Jacobian

λk is the eigenvalue of the Jacobian matrix

J = (
γfu − (kπ/L)2 γfv
−γgu −γgv − d(kπ/L)2)

The system is stable near equilibrium point if λk < 0 or
Rλk < 0, unstable if λk > 0 or Rλk > 0.
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Modes of instability

soft-mode instability: eigenvalue of the linearized
system, λk, is real, and λk ≥ 0, leads to stationary
spatial pattern.
hard-mode instability: λk is complex, and Rλk > 0,
leads to oscillatory pattern.
For certain parameter regimes, soft and hard
instabilities can coexist, taken on by different spatial
modes.
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The eigenvalues

The eigenvalues of

J = (
γfu − (kπ/L)2 γfv
−γgu −γgv − d(kπ/L)2)

are
λk1,2 =

1
2{tr±

√

tr2 − 4Det}

with
tr = γ(fu + gv) − (1 + d)ω, ω = (kπ/L)2

Det= dω2 − γ(dfu + gv)ω + γ
2(fugv − fvgu)
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Stability in terms of tr and Det

λk1,2 =
1
2{tr±

√
tr2 − 4Det}
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Parameters that ensure hard-mode instability

It is necessary that (1) for some k, tr is positive
tr = γ(fu + gv) − (1 + d)ω, ω = (kπ/L)2

We need fu + gv > 0.
In particular, tr(k = 1) > 0, we need

fu + gv >
d + 1
γ

(
π

L
)

2
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Parameters that ensure soft-mode instability

As long as we have Det< 0, we have soft-mode instability
for some k

Det= dω2 − γ(dfu + gv)ω + γ
2(fugv − fvgu)

We need the minimum of Det(ω0) < 0 and

ω0 =
γ(dfu + gv)

2d > 0. That requires
dfu + gv > 0

fugv − fvgu <
(dfu + gv)2

4d
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Evalue Jacobian at (u∗, v∗) = (a, b/a), we
to ensure oscillation (hard-mode instability)

b > a2 + 1 or b > a2 + 1 + d + 1
γ

(
π

L
)

2

to ensure spatial pattern (soft-mode instability)

b > (
a

√
d
+ 1)

2

For convenience, we set

a2 + 1 = (
a

√
d
+ 1)

2

⇒ d = (
a

√
a2 + 1 − 1

)

2
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Boundary conditions and intial conditions

1-D domain, Dirichlet Boundary Conditions
u(0, t) = u(L, t) = a, v(0, t) = v(L, t) = b/a

where L = 30 is the length of the domain.
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Parameter choices: b = 5.6
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Parameter choices: b = 5.9
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Parameter choices: b = 8
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Variational Formulation

Considering the dynamics of u, with f as the reaction term
ut = γf + uxx

The variational formulation of the problem with respect to
the space of test functions φ(x) (compactly supported):

∫

L

0
utφdx = γ ∫

L

0
fφdx+∫

L

0
uxxφdx

∫

L

0
uxxφdx = uxφ∣

L
0 − ∫

L

0
uxφ

′dx

If we use zero-flux boundary conditions ux(0) = ux(L) = 0,
or φ vanishes at the boundary, uxφ∣L0 = 0. We have

∫

L

0
utφdx = γ ∫

L

0
fφdx − ∫

L

0
uxφ

′dx
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Galerkin approximation

Now we approximate the variational formulation in finite
dimensional space.
Test functions φj (j = 1,2, ...N) are piecewise continuous,
and form a basis for approximate solution u = uh, v = vh :

u =
N

∑
j=1
c
(u)
j φj ux =

N

∑
j=1
c
(u)
j φ′j

v =
N

∑
j=1
c
(v)
j φj vx =

N

∑
j=1
c
(v)
j φ′j

d
dt

N

∑
j=1
cj ∫

L

0
φjφidx = γ ∫

L

0
fφidx −

N

∑
j=1
cj ∫

L

0
φ′jφ

′

idx
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Galerkin Approximation in matrix form

Putting the approximated reaction-diffusion system into
matrix form,

M d

dt
c(u) = γb(f) − Ψc(u)

M d

dt
c(v) = γb(g) − dΨc(v)

cj = cj
Mij = ∫

L

0 φiφjdx, or Mij =
s

Ω φjφidA

b(f)i = ∫
L

0 fφidx, or b(f)i =
s

Ω fφidA

b(g)i = ∫
L

0 gφidx, or b(g)i =
s

Ω gφidA

Ψij = ∫
L

0 φ′iφ
′

jdx, or Ψij =
s

Ω{φjxφix + φjyφiy}dA
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Numerical Integration

Combine Crank-Nicolson Method and Adams-Bashforth
Method:

MUk+1 −Uk

∆t = γ(
3
2Fk −

1
2Fk−1) − ΨUk+1 +Uk

2 (2)

MVk+1 −Vk

∆t = γ(
3
2Gk −

1
2Gk−1) − dΨVk+1 +Vk

2 (3)
k is the index of iteration and ∆t denotes the time step.
The matrices M and Ψ are computed using 3-point
Gaussian Quadrature.
By rearranging (2) and (3), we can solve Uk+1 and Vk+1 for
each iteration in Matlab. ,
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Damped oscillation: b = 5.5
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Damped oscillation: b = 5.6
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Sustained oscillation: b = 5.63
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Oscillation rules: b = 5.9
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Spatial frequency changes in sustained oscillation
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Oscillation at a single location
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Comparing results at different resolutions
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Convergence with respect to mesh size h
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Time series of errors

Errors surely depend on amplitude. A more important
question is: whether there was accumulative phase shift as
time went on.
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Comparing results at final time
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Yes, phase shift
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Yes, phase shift
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Summary

There is a narrow band where oscillation and spatial
can actually coexist.

The spatiotemporal pattern can be complicated.
It remains a question how spatial and temporal
frequency interact

Error estimate could make more sense if done in the
frequency domain, and considered separately for
amplitude and phase.
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