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Abstract
The brain is a complex, nonlinear system, exhibiting ever-evolving

patterns of activities even without external inputs or tasks. Such intrinsic or
resting neural dynamics has been found to play critical roles in the normal
functioning of the brain and psychiatric disorders. It remains a challenge,
however, to link the intrinsic dynamics to the underlying structure, in
part, due to the nonlinearity. Here we use a nonlinear-dynamical model
to examine how the complexity of intrinsic neural dynamics, in terms of
multistability and temporal diversity, is sculpted by structural properties
across scales. Our model combines a population-level model (Wilson-
Cowan) with additional biophysical constraints (from the reduced Wong-
Wang model). We show that multistability can emerge at the whole-brain
level even when individual brain regions are by themselves monostable. The
multi-functionality and memory capacity associated with multistability are
thus synergistic properties of the whole-brain, irreducible to properties of
its parts. The exact size of the functional repertoire and memory capacity
is a joint product of the nonlinearity in the local dynamics and the topology
of the large-scale network. Similarly, temporal diversity of the brain is
determined by both local structural differences and the topology of the
global network. Together, this work unravels an intertwined and circular
relationship between local and global properties in defining the intrinsic
dynamic organization of the brain. Looking forward, the model can be
used to probe the multiscale mechanisms underlying psychiatric disorders
and the effective scales for treatment.

1 Introduction
One of the fundamental goals of neuroscience is to understand how the structure
of the brain constrains its function [1]. Two features of the brain make this goal
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challenging: the brain consists of functional units across multiple spatiotemporal
scales, and these units interact with each other nonlinearly (see e.g. [2–4]). Here,
nonlinearity means that the changes in the functional units are not proportional
to the input it receives. Nonlinearity notoriously obscures the link between
structural constraints imposed on the interaction and its dynamical consequences.
Nonlinear dynamical models serve as essential tools for bridging structural and
functional understanding of the brain [5, 6]. In the present work, we use a
unified mean-field model to examine how structural properties across scales—
from neurons to large-scale networks—jointly determine the intrinsic dynamic
organization of the whole brain. We demonstrate that focusing solely on local
or global properties is insufficient for understanding and predictably altering
the complexity of intrinsic neural dynamics. Below we give a brief overview of
why it is important to characterize the intrinsic dynamic organization of the
brain, what are the key features, and how we construct a model to examine
these features across scales.

Nonlinear dynamical models of the brain have provided mechanistic insights
into specific functions such as memory [7, 8], visual processing [9, 10], decision
making [11, 12], movement coordination [13, 14], just to name a few. They
correspond to an empirical focus on task-positive activities of the brain—how
the brain reacts to external stimuli or task demands. On the other hand,
intrinsic dynamics of the brain has long been observed (e.g. [15, 16]), but
commonly treated as a baseline subtracted from task-positive activities. This
baseline, however, is more active than meets the eye: it consumes the largest
fraction of the brain’s energy resources, while the task-imposed additional cost is
comparatively trivial [17]. Neural imaging studies further reveal the richness of
such intrinsic brain dynamics—it is organized into distinct functional networks,
which are visited intermittently (e.g. [18–24]). The intrinsic dynamics of the
brain constrains behavior and task-related neural activities across multiple time
scales (e.g. [25–27]) and sustains alteration in neurological and psychiatric
disorders [28]. These empirical findings drive the development of large-scale
models of whole-brain dynamics (see [29] for a review). They serve to improve our
understanding of the nature and functional purpose of intrinsic brain dynamics
[5, 30] and to provide tools for mechanistic classifications and diagnostics of
psychiatric disorders [31].

Nonlinear dynamical systems are often chosen over linear ones to account for
the ubiquitous multistability and coordinated rhythmic activities in biological
systems—the brain is one of the best examples [32–36]. To say that a system
is multistable is to say that multiple stable patterns of activities (attractors)
are all achievable by the system. Which pattern is retrieved depends on the
task (boundary conditions) or intrinsic noise. Multistability of the brain signifies
its multi-functionality and its ability to form memory as persistent patterns of
activity [2, 32, 37, 38]. The switching dynamics between functional networks in
the resting brain is thought to reflect noise-driven exploration of the underlying
multistable landscape, i.e. the brain’s intrinsic functional repertoire [39]. On the
other hand, brain dynamics is parsed in time by a hierarchy of diverse rhythmic
activities [36, 40, 41]. The coordination across rhythmic activities at diverse
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frequencies gives rise to the complex functional organization of the brain that
involves dynamic integration and segregation across multiple scales [36, 42].
Disruption of such temporal coordination is associated with neuropsychiatric
disorders [43]. Together, multistability and temporal diversity are key features
of intrinsic neural dynamics that theorists seek to capture using large-scale
nonlinear dynamical models [44–46].

In the present work, we use a nonlinear dynamical model to systematically
demonstrate how multistability and temporal diversity are shaped by structural
properties of the brain across multiple scales—from neurons, to local populations,
and to large-scale networks. The model is a formal unification of the Wilson-
Cowan model [9, 47] and the reduced Wong-Wang model [12, 48, 49]. The Wilson-
Cowan model [47] is a well-known population-level model of brain dynamics. It
describes the average firing activities of two interacting populations of neurons—
one excitatory population and one inhibitory population (see Section 4.2 for
details). It has been widely used for modeling multistability and rhythmic activity
in large-scale brain networks, where each node (brain region) contains two such
local populations (e.g. [44, 50–55]). While the Wilson-Cowan model exhibits
the key dynamic features of interest, it is unconstrained by the biophysical
properties of underlying neurons. These biophysical underpinnings, however,
can be important for predicting the outcome of electrical or pharmacological
stimulation in experimental or clinical settings (e.g. [56, 57]). The reduced Wong-
Wang model, on the other hand, is a biophysical network model constrained
by biologically plausible parameters at the neuronal level [11, 38, 58–61]. Its
noise-driven dynamics near certain equilibria has been used to capture resting-
state functional connectivity (e.g. [49, 62]). As we will show, however, its
reduced nonlinearity limits the extent of multistability and makes it less viable
for studying oscillations. Here, we combine the two models to retain both the
nonlinearity of the Wilson-Cowan model and the biophysical constraints of the
reduced Wong-Wang model. The unified model is thus suitable for both studying
key nonlinear features of intrinsic brain dynamics and predicting the effect of
biophysical perturbations in empirical settings.

Complementing existing studies where biophysical network models were used
to fit specific data (e.g. [48, 49, 62]), here we go forward from a plausible model
and ask what are the critical parameters controlling the complexity of intrinsic
neural dynamics. Below we show that the intrinsic dynamics of the model brain
is shaped jointly by structural properties across scales and cannot be predicted
based on monoscale information. In particular, multistability and temporal
diversity absent from individual brain regions can be created synergistically at
the whole-brain level due to global connectivity. Conversely, local structural
properties greatly constrain the size of the functional repertoire and the extent
of temporal diversity.
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2 Results
Our unified model describes the evolution of whole-brain dynamics as the mean-
field activities of neuronal populations in each brain region. Each brain region
is modeled as a pair of excitatory and inhibitory populations, i.e. the local
model (Figure 1, left; equation 1-3). The mean-field activity of the excitatory
and inhibitory populations is described by a pair of state variables SE and
SI respectively, i.e. the gating variables. The excitatory population excites
itself (via local connection wEE) and the inhibitory population (via wEI). The
inhibitory population inhibits itself (via wII) and the excitatory population (via
wIE). These local populations further connect to other brain regions into a global
network, i.e. the global model (Figure 1, right; equation 4-6). Mathematical
details of how the present model combines the Wilson-Cowan model and the
reduced Wong-Wang model are provided in Materials and Methods.

In the following sections, we first examine the dynamic repertoire of isolated
brain regions (the local model; Section 2.1) and how nonlinearity in the present
model enhances multistability and produces realistic oscillation (Section 2.2). In
particular, we show how local structural connectivity controls the emergence of
multistability and oscillation in isolated brain regions. Building on this picture,
we further show how long-range connectivity between these brain regions interacts
with local properties in shaping the global multistable landscape (Section 2.3)
and temporal diversity across regions (Section 2.4). The numerical results are
illustrated in the main text while the corresponding analytical supports are
provided in the Supplementary Materials.
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Figure 1: A schematic of the structure of the present model. For il-
lustrative purposes, the cortex is modeled in this figure as a network 6 brain
regions, 3 in each hemisphere (right panel, the global model). Each brain region
is modeled as two interacting local neural populations — an excitatory popula-
tion E and an inhibitory population I (partly enclosed by a black box). The
excitatory population of each brain region can receive current input from the
excitatory population of other brain regions, constrained by large-scale structural
connectivity (red dashed connections). Zooming in to a single brain region, we
have the local model (left box). Local populations interact with each other via
two excitatory connections (red, wEE and wEI) and two inhibitory connections
(blue, wII and wIE). The local excitatory population can receive an input IE
from outside of this brain region (gray arrow), which can be the total input from
other brain regions.
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2.1 Local structural connectivity controls dynamic reper-
toire of an isolated brain region

Figure 2: Local dynamics critically controlled by the strength of
excitatory-to-excitatory connection wEE and excitatory-to-inhibitory
connection wEI . (a)-(g) are seven different dynamic regimes of the local model
(equation 1-2) in the 2-dimensional parameters space (wEE , wEI). Here the local
inhibitory-to-excitatory connectivity wIE—the inhibitory feedback—is matched
to the excitatory-to-excitatory connectivity, i.e. wIE = wEE ; and IE = 0.382 as
in [49]. Black areas (e, g) are the regimes of stable equilibrium. Colored areas
are the oscillatory regimes: (a)-(b) for limit cycles and (c), (d), (f) for damped
oscillations. The color reflects the frequency of oscillation. A gray dashed line
indicates the Hopf bifurcation. The triangular area enclosed by white dashed
lines (saddle-node bifurcation) is the bi-stable regime (b, c). An example from
each regime is provided in Figure 3.

The local model exhibits a rich repertoire of dynamical features, including mul-
tistability (c, b in Figure 2, 3), damped oscillation (c, d, f), and limit cycles
(sustained oscillation; a, b). Mathematical analysis of the local model (Sec-
tion S4 in Supplementary Materials) shows that nonlinearity in the dynamics
can essentially be controlled by two local structural properties: the strength of
excitatory-to-excitatory connection wEE and the strength of the excitatory-to-
inhibitory connection wEI . The two structural properties are responsible for
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“twisting” the flow of dynamics, manifested in the curvature of the nullclines
(dashed lines in Figure 3). Specifically, stronger wEE introduces a deeper twist
and fold of the red nullcline (compare Figure 3a and d), whereas stronger wEI
introduces a more vertical twist of the blue nullcline (compare Figure 3d and
e). These twists are the key sources of dynamic complexity—multistability
and oscillation. For example, when wEE is sufficiently large (equation S19),
multistability becomes possible: a deep fold of the red nullcline makes possible
multiple intersections between the nullclines, thereby the number of attractors
(see Section S4, Multistability). When wEI is sufficiently large (equation S27),
oscillatory activity becomes possible. Moreover, the combination of large wEE
and wEI gives rise to sustained oscillation (equation S50). The characteristic
frequency of such oscillation further depends on the specific values of wEE and
wEI . It is important to note that the general qualitative effects of these two
local structural properties are consistent with those of the Wilson-Cowan model,
but the specific boundaries at which transitions occur are determined by the
biophysical constraints inherited from the reduced Wong-Wang model (see equa-
tions S27, S50). Analytical results (Section S4) provide detailed quantification
of how these boundaries are shifted by different local structural properties.

To maintain a sufficient twist in the red nullcline (red dashed line in Figure 3)
and associated dynamic complexity, inhibitory-to-excitatory feedback wIE needs
to be proportional to self-excitation wEE (c.f. equation S9). In the present study,
we simply let wIE = wEE . This equality is a simpler alternative to the Feedback
Inhibition Control adopted in [49] in both numerical and mathematical analyses.
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Figure 3: Example phase portraits from different regimes of the local
model. Phase portraits (a) to (g) are examples chosen from the corresponding
regimes in Figure 2. The specific parameters defining local structural connectivity
are (a) wEE = 4, wEI = 1; (b) wEE = 4, wEI = 0.8; (c) wEE = 2.3, wEI = 0.75;
(d) wEE = 1.5, wEI = 1; (e) wEE = 1.5, wEI = 0.5; (f) wEE = 1.5, wEI = 0.3;
(g) wEE = 1.5, wEI = 0.2. The vector fields (arrows) reflect the underlying
dynamics at different points in the state space. Gray trajectories following the
vector fields are solutions of the local model (equation 1, 2) given a fixed sets
of ten different initial conditions. Nullclines (dashed lines) indicate where the
flow of the dynamics is either purely vertical (red) or purely horizontal (blue).
The intersections between the nullclines are the fixed points. Different types
of fixed points are labeled with different markers (see legend). A fixed point is
stable (×) if nearby trajectories converge to it over time, unstable (+) if nearby
trajectories diverge from it, or a saddle (∗) if nearby trajectories approach it in
some direction(s) but diverge from it in some other direction(s). A fixed point is
said to be a spiral (◦) if trajectories near the fixed point rotate either towards
the fixed point (damped oscillation) or away from the fixed point (sustained
oscillation or limit cycle in the present case). Strong oscillation mainly appears on
the ascending branch of the red nullcline. Overall, we see that local connectivity
defines the dynamics in each regime essentially by controlling the geometry of
the nullclines.

8

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 22, 2020. ; https://doi.org/10.1101/2020.05.14.097196doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.14.097196
http://creativecommons.org/licenses/by/4.0/


2.2 The effects of nonlinearity in the local model
Before getting into the global model, we briefly show how the added nonlinearity
from the Wilson-Cowan model [47] extends the reduced Wong-Wang model [12,
49] to more complex scenarios. As discussed in detail in Section 4.2-4.3, this
unified model is both more in line with Wong-Wang’s initial derivation [12]
and the geometric form of the Wilson-Cowan model that defines its qualitative
behavior. Here we demonstrate the result numerically.

Formally, the present model matches the reduced Wong-Wang model for
low levels of excitation (c.f. equation 18 and Figure 7). Consequently, their
dynamics also match under weak local excitatory connectivity (Figure 4a-b). In
a regime of stronger local excitatory connectivity, as explored in [62], the two
models diverge (Figure 4c-d). In the present model (Figure 4c), all trajectories
are well-confined within a physiologically plausible range—state variables SE
and SI denote the fraction of open channels, which by definition are between
0 and 1. In contrast, certain trajectories of the reduced Wong-Wang model
(Figure 4d) overshoot beyond the physiologically plausible range. The effect
of added nonlinearity in the present model manifests through the curvature of
the blue nullclines, which confines the flow of oscillatory activities and creates
extended multistability (see e.g. Figure 3b). Thus, the present model is more
suitable for studying key nonlinear dynamical features in the resting brain.
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Figure 4: Comparisons between the present model (a, c) and the re-
duced Wong-Wang model (b, d) in two dynamic regimes. (a) and (b)
show the phase portraits of the present model (equations 1-2) and the reduced
Wong-Wang model (equations 11-12) respectively in a regime of weak local
excitatory connectivity. Parameter values are obtained from [49] and identical
across the two models: wEE = 0.21, wEI = 0.15, wIE = 1, wII = 1, IE = 0.382
and II = 0.267 (unspecified parameters follow Table 1). The resulted dynamics
are virtually identical. (c) and (d) show a similar comparison between the
two models in an oscillatory regime, where the local excitatory connectivity is
stronger (wEE = 4, wEI = 1). While the dynamics of the present model (c) is
well confined within a realistic range (SE , SI ∈ [0, 1]), it is not the case for the
reduced Wong-Wang model (d).

2.3 Global dynamic landscape shaped by structural prop-
erties across scales

Now we show the added effects of global connectivity on the dynamic landscape by
comparing the bifurcation diagrams of the global model (equation 4-6; Figure 5d-
i) with those of the local model (equation 1-3; Figure 5a-c). A bifurcation
diagram here describes how potential dynamic patterns (attractors) of different
types emerge and disappear as a certain control parameter varies. The control
parameter for the local model is the input level IE and that of the global model
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is the global coupling G (equation 6; see Section S1 for computational details).
For the local model (equation 1-2), Figure 5a-c show three bifurcation dia-

grams for succeedingly greater local excitatory connectivity (i.e. wEE and wEI).
As expected, there is a corresponding increase in multistability and oscillation.
The increase in multistability can be seen as the addition of new folds in the
bifurcation diagrams (b,c) compared to (a). Figure S3 gives an example of a
monostable bifurcation diagram (no fold) for very low local excitatory connectiv-
ity. The new folds in Figure 5b-c create a new middle branch of attractors with
either damped (green trace in b) or sustained oscillation (blue trace in c). With
this additional branch, the response of a single brain region to different inputs
(IE) is no longer binary and static as in (a), but with an in-between option that
evolves in time. In the present work, we only focus on this middle branch when
we speak of oscillations; spirals outside the middle branch, e.g. Figure 3f, is
highly damped, not observable in the time series. This middle branch can encode
a wide range of input levels as the oscillation frequency of the local population
(insets of Figure 5 b,c). The specific range of encoding frequency can differ from
brain region to brain region contingent upon the local structural connectivity
(see, e.g., the insets of Figure 5 b,c and regions a-d in Figure 2). Overall, the
local model exhibits more complex behavior, i.e. multistability and oscillations,
with greater local excitatory connectivity.
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Figure 5: Local and global structural properties jointly determine the
complexity of whole-brain dynamics. (a-c) show the bifurcation diagrams
of the local model for three different types of local excitatory connectivity: (a)
wEE = 0.7 and wEI = 0.35; (b) wEE = 2 and wEI = 1; (c) wEE = 2.8 and
wEI = 1. Overall, local connectivity increases from (a) to (c). The activity of the
excitatory population SE is used as an order parameter, indicating the location
of each attractor. The external input IE is used as a control parameter. Each
point in the diagram indicates the location of a particular fixed point. The color
denotes the type of each fixed point: non-black points represent attractors, black
points unstable fixed points that are not associated with a limit cycle. Some
of the attractors connect to each other and form an attractor branch (roughly
horizontal curves). All (a)-(c) have a upper branch and a lower branch. (b)-(c)
have an additional branch in the middle, where the brain region oscillates. Insets
of (b) and (c) show the oscillation frequency of the brain region as a function
of the input current. (d)-(f) show the corresponding bifurcation diagrams for
three uniform global networks, i.e. the large-scale structural connectivity Cij ’s
are identical between any two brain regions i 6= j (equation 6). The average
activity of all excitatory populations (S̄E) is used as an order parameter and
the global coupling G (equation 6) as an control parameter. Similarly, (g)-(i)
show the corresponding bifurcation diagrams for three realistic global networks,
i.e. Cij ’s reflect the human connectome (see text for details).
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Next, we look at the dynamic landscape at the whole-brain level. Figure 5d-
f show the bifurcation diagrams of the global model (equations 4-6) with 66
uniformly connected brain regions, i.e. the structural connectivity is the same
between any two regions. Here the 66 regions correspond to the 66 anatomical
regions of the cortex as in [48, 63]. The local structural properties within these
global networks correspond exactly to those of Figure 5a-c respectively. The
global bifurcation diagrams share general qualitative features with their local
counterparts—the number of major branches of attractors and the presence of
oscillatory activity. One exception is that the damped oscillation in isolated
brain regions (green branch in Figure 5b) becomes sustained oscillation when
connected to other regions of the same characteristic frequency (blue branch
in Figure 5e). One remarkable difference between the uniformly connected
global models and the corresponding local models is that, with the absence of
persistent input, the global model can retain memories of prior input while the
local model cannot. That is, when IE = 0, the local model is monostable (lower
red branches in Figure 5a-c), i.e. returning to the same state regardless of prior
input. The global model (equation 4-6) by definition does not receive external
input; yet the model is multistable for a sufficient amount of global coupling,
e.g. G > 1 (Figure 5d-f). We further substantiate and generalize this result
analytically and numerically (Section S5 Multistability) to the case where each
isolated brain region is monostable for any IE . These findings suggest that the
coupling between brain regions can synergistically create a functional repertoire
or memory capacity that isolated brain regions do not possess.

Uniform structural connectivity is, of course, a rather naive assumption for a
whole-brain model. Therefore, we next substitute this uniform global structural
connectivity with a realistic one (Figure 5g-i). To obtain a realistic human
connectome, we average over the connectome of 11 unrelated subjects from the
Human Connectome Project [64, 65] based on a 66-region parcellation of the
cortex [63]. Given a realistic global structural connectivity, the global memory
capacity is greatly amplified (Figure 5g-i). Comparing to Figure 5d-f, the number
of attractor branches in Figure 5g-i is much higher: there are 173 branches of
attractors in (g), 609 in (h), and 554 in (i) (branches are computed using single-
linkage clustering). The heterogeneous nature of the human connectome leads
to much greater whole-brain memory capacity by breaking the spatial symmetry.
The greatest memory capacity (Figure 5h,i) results from the combination of local
dynamic complexity (multistability) and realistic global connectivity.

In short, we have shown that the complexity of the global dynamical landscape
depends crucially on both local structural properties and the synergistic effects
of global connectivity. Additional analytical supports are provided in Section S5.

2.4 Local and global causes of temporal diversity
Having examined the multistability of the global dynamic landscape, now we
turn to the structural constraints on temporal diversity. In particular, we show
how spectral properties of the simulated neural activities and corresponding
hemodynamic responses are affected by both the diversity of local structural
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properties and the structure of the large-scale connectome.
Given a uniform global network, temporal diversity across the whole brain

can be induced by the diversity of local excitatory-to-excitatory connection
(wEE), as shown in Figure 6a. Brain regions with relatively weak wEE (blue)
have low characteristic frequencies around 10 Hz (alpha range), while brain
regions with strong wEE (red) have higher characteristic frequencies around
30 Hz (beta/gamma range). In other words, the characteristic frequency of
the oscillation increases monotonically with wEE (see also Figure S1a). This is
expected from the behavior of isolated brain regions (Figure 2d). In addition
to the expected diversity, signs of coordination between regions can be seen as
the wide-spread alpha peaks (Figure 6a). In contrast, regions with a higher
characteristic frequency (beta/gamma range) are not as influential to other
regions. That is, low-frequency oscillations, rather than high-frequency ones, are
responsible for global coordination.

The above observations concern high-frequency dynamics typically measured
using, e.g. electroencephalography (EEG) and magnetoencephalography (MEG).
For low-frequency dynamics typical for functional magnetic resonance imaging
(fMRI), we examine the low-frequency content (0.01-0.1 Hz) of the normalized
power spectra of BOLD activities, derived from the same simulated neural
dynamics (see Section S2 in Supplementary Materials for details). The result is
shown in Figure 6b: there is no significant dependency of low-frequency power on
wEE (Spearman correlation ρ = −0.029, p = 0.81). In short, we find differential
effects of local structural diversity on neural dynamics at the time scales typical
for different neural imaging modalities.
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Figure 6: Temporal diversity induced by diversity in local (a, b) and
global structural connectivity (c, d). Spectral analyses are based on two
simulated trials of the global model (equation 4-6 with N = 66) each with
identical initial conditions S(i)

E (0) = S
(i)
I (0) = 0.2, a 1200s duration, and a

moderate level of noise σ = 0.01. For the first simulated trial (a, b), different
brain areas are endowed with different local connectivity, w(i)

EE , evenly spread
in the interval [1, 2]; the large-scale structural connectivity is set to be uniform,
i.e. Cij = 1/(N − 1), for i 6= j. In addition, the global coupling G = 1.35. (a)
shows the power spectra of the excitatory gating variables S(i)

E for i = 1, · · · , N .
The spectrum for each brain region is color coded by the rank of wEE—blue
to red indicate the smallest to the largest wEE . The peak frequency of these
spectra clearly increases with wEE . (b) shows the rank of the low-frequency
power of the corresponding BOLD signal, integrated over the frequency range
[0.01, 0.1] Hz (see Section S2 for details), which depends little on the rank of
wEE . (c) and (d) show results of similar analyses but for the second simulated
trial, where the individual brain regions are identical (w(i)

EE = 2 for all i) but
the global structural connectivity is realistic, i.e. Cij here reflects the human
connectome [64, 65] with the global coupling G = 2.5. Both low-frequency (d)
and high-frequency (c) activities are highly affected by the degree of the brain
region in the global network (rank color-coded).
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On the other hand, temporal differentiation does not mandate the brain
regions themselves to be structurally different. As shown in Figure 6c-d, locally
identical brain regions can behave very differently due to the topology of the
large-scale network (human connectome as in Section 2.3). The influence of
large-scale structural connectivity on temporal diversity is manifested in both the
high-frequency neural dynamics (Figure 6c; Figure S2a) and the low-frequency
power of the BOLD signals (Figure 6d; Figure S2b). Specifically, the low-
frequency power is inversely related to the degree of each node (brain region) in
the large-scale network (Spearman correlation ρ = −0.584, p < 10−6).

In Section S3, we demonstrate that the above effects are robust over 200
simulated trials of the same parameter settings. Overall, both local (Figure 6a,b;
Figure S1) and large-scale structural connectivity (Figure 6c,d; Figure S2)
contribute to the diversification of local dynamics. The contribution of local
structural differences is stonger in a higher-frequency range (Figure 6d; Fig-
ure S1a), while the contribution of global structural connectivity is stronger
in a very-low frequency range (Figure 6d; Figure S2b). Modeling real neural
dynamics requires considering both sides of the spectrum.

3 Discussion
In the present work, we use a unified mean-field model to show how the complex-
ity of intrinsic brain dynamics can be shaped by structural constraints across
scales. The model combines the nonlinearity of the Wilson-Cowan model [47] and
the biophysical constraints of the reduced Wong-Wang model [12, 49]. The non-
linearity enhances the model’s multistability and oscillatory dynamics, essential
for understanding the nonlinear dynamics of the resting brain (Section 2.2). The
biophysical constraints enhance its utility for generating theoretical predictions
regarding the effect of electrical or pharmacological stimulation [31]. Moreover,
the unification connects neuronal, population-level, and network-level properties.
This allows for a multiscale interrogation of the structure-function relation in
the brain, essential for understanding its orders and disorders [4, 66–69]. Using
this model, we show that local structural properties fundamentally constrain
multistability, thereby, the functional repertoire and memory capacity of the
whole brain (e.g., compare Figure 5i with Figure S3c). Nevertheless, synergistic
effects at the global level play an important role in creating and amplifying
multistability (e.g. compare Figure 5e with Figure 5h). Similarly, the temporal
diversity of the whole brain depends on both the diversity of local structural
connectivity and the topology of the large-scale network (Figure 6). These
findings suggest that the intrinsic dynamic organization of the brain cannot be
determined by either the local structural differences or the large-scale network
topology alone.

In isolated brain regions, nonlinearity in the dynamics can be effectively
controlled by two key local structural properties: local excitatory-to-excitatory
connectivity (self-excitation, wEE) and local excitatory-to-inhibitory connectivity
(wEI). In the brain, local excitatory-to-excitatory connections are abundant,
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especially relative to excitatory-to-inhibitory connections [70]. In our model, they
contribute indispensably to multistability. The contribution of multistability to
biological complexity is not restricted to the brain but permeates living systems
from molecular to social levels [34, 35]. Multistability in living systems is often
linked to self-excitation, or in more general terms, positive feedback loops [71–73].
Mathematically, we show that self-excitation creates multistability by twisting
and folding the flow of dynamics (Section S4 in Supplementary Materials). While
the qualitative effect of self-excitation applies to Wilson-Cowan type models in
general, the quantitative threshold for multistability to emerge depends on the
specific transfer function and thereby the biophysical properties at the neuronal
level (equation S19; c.f. [47, eq.17] for the counterpart in the Wilson-Cowan
model). The biophysical underpinnings of the present model help connect the
mathematical prediction of increasing nonlinearity to physical manipulations.
For example, varying the level of local connectivity in the model can be realized
by manipulating the conductance of N-methyl-D-aspartate (NMDA) receptors
in local neuronal populations. Empirically, the conductance can be modulated
by various pharmacological and endogenous antagonists and agonists, such as
ketamine [74] and dopamine [75]. Such manipulations have been theoretically
predicted and shown to affect memory capacity [56, 57, 76].

Building on the local dynamics, important synergistic effects are present at
the global network level that cannot be attributed to the properties of isolated
brain regions. Such synergistic effects include creating new types of dynamics, e.g.
sustained oscillation in global network not present in isolated nodes (Figure 5e-h
vs. Figure 5b); and enlarging the functional repertoire or memory capacity of
the whole brain through enhanced multistability. Non-trivial memory capacity
emerges at the whole-brain level even when the local nodes themselves are
memory-less (Section S4 Multistability). Moreover, global memory capacity is
determined by how well the global network structure amplifies local complexity
(compare Figure 5h). In particular, a realistic global network (Figure 5 g-i) better
amplifies local complexity than a uniform one (Figure 5 d-f). The non-uniform
nature of the human connectome breaks the spatial symmetry of the global model,
whereas symmetry breaking is often a key contributor to complex dynamics [2,
42, 77–80]. Of course, the human connectome is not only non-uniform, but also
endowed with more specific features such as modularity, small-worldness, and
multiscale characteristics—embracing both structural integration and segregation
[1, 69, 81, 82]. A detailed study of how such specific structural features alter
the geometry of the global dynamic landscape is worthy of further theoretical
investigation (see Section S5).

The temporal diversity of the model brain is also affected by both local and
global structural constraints. In the local model, oscillatory activity requires
a sufficiently strong excitatory-to-inhibitory connection. The oscillation may
be damped or sustained at various characteristic frequencies, contingent upon
the strength of excitatory-to-excitatory connection (see Figure 2a-d and Sec-
tion S4 Oscillation). The importance of inhibitory neurons, and their interaction
with pyramidal cells, for generating rhythmic activity has been well demon-
strated in both theoretical and empirical studies, e.g. [83–87]. For multiple
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oscillatory processes to form complex spatiotemporal patterns, it often requires
the coexistence of diverse time scales [35, 42, 88]. In the present model, temporal
differentiation can be caused by local structural differences between brain regions,
i.e. the strength of local excitatory-to-excitatory connection (Figure 6ab). It
has been shown that incorporating such local structural diversity in the reduced
Wong-Wang model better describes real neural dynamics [62], demonstrating
its empirical relevance. On the other hand, temporal differentiation can also
be induced solely by the structure of the global network—the whole defining
the parts (Figure 6cd). The diversity of node degree is a key contributor to
the spectral diversity in the low-frequency range (Figure 6d), which has been
observed empirically (e.g. [89]). It resonates with earlier findings that slow
dynamics is more reflective of the large-scale network structure (e.g. [90]). These
multiscale structural sources of temporal diversity may influence each other
through their joint-influence on the dynamics due to plasticity. Further theoreti-
cal investigation incorporating plasticity may shed light on how connectivity at
both the local and the global level changes with development (see [91]).

To summarize, we have provided a systematic demonstration of how intrinsic
neural dynamics can be shaped by structural constraints across scales. The
complexity of the intrinsic dynamic organization is characterized by the extent
of multistability and temporal diversity. These complex dynamic features can
emerge from the nonlinearity in the dynamics controlled by local structural
connectivity. They can also be created or amplified synergistically at the large-
scale network level. The work highlights the importance of multiscale modeling
of intrinsic neural dynamics. This theoretical framework, constrained by the
biophysics, may be used in stimulation-based hypothesis generation and model
fitting. Instead of fitting models to unperturbed resting brain dynamics, electrical
or magnetic stimulation of selected brain regions may be used for a more
extensive and controlled exploration of the underlying multistable landscape.
This stimulation-based approach may provide additional empirical constraints
for individualized and generalizable model-fitting. Thus, the work provides
basic theoretical and computational elements for experiment-modeling integrated
approaches to understanding nonlinear brain dynamics.

4 Materials and Methods

4.1 The present model
The present model describes the dynamics of multiple interconnected brain
regions (see Figure 1 right panel for a schematic). Each brain region consists
of two local neuronal populations (Figure 1 left box), an excitatory and an
inhibitory population, denoted by ‘E’ and ‘I’ respectively. The average activities
within these two populations are described by a pair of average synaptic gating
variables SE and SI (i.e. the fraction of open channels in each population). The
local dynamics of a single brain region is described by the following equations,
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which we refer to as the local model.

dSE
d t

= −SE
τE

+ (1− SE)γE HE(wEESE − wIESI + IE) (1)

dSI
d t

= −SI
τI

+ (1− SI)γI HI(wEISE − wIISI + II) (2)

The activity of each population has a natural decay at the time scale of τE
and τI respectively, as described by the first term on the right-hand-side of
equation 1-2. At the same time, each population’s activity tends to increase with
the fraction of the currently closed channels (1− Sp) and the population firing
rate (Hp), scaled by a factor γp for p ∈ {E, I}. This is described by the second
term on the right-hand-side of equation 1-2. HE and HI are transfer functions
that map synaptic current input to population firing rate of the excitatory and
the inhibitory population respectively (for example, HE shown in Figure 7 as a
black curve). In particular, they are sigmoidal functions of the form

Hp(x) =
rmax +

apx− bp − rmax
1− edp(apx−bp−rmax)

1− e−dp(apx−bp)
, (3)

whose output increases with input monotonically and saturates at rmax—the
maximal firing rate limited by the absolute refractory period of neurons (around
2 ms in certain cell types [92, 93]). The specific shape of each transfer function
is determined by three additional parameters ap, bp and dp (ap and bp determine
the location and slope of the near-linear segment in the middle; dp determines
the smoothness of the corners bordering the said near-linear segment). This
transfer function is converted from Wong and Wang’s original formulation [12,
94] (a soft rectifier function, equation 13, orange dashed line in Figure 7) into a
sigmoidal form (black solid line in Figure 7), while retaining the original value
of parameters ap, bp, and dp (shown in Table 1). The parameters were chosen
to approximate the average response of a population of spiking pyramidal cells
(p = E) and interneurons (p = I) respectively, incorporating physiologically
plausible parameters [11, 12]. The justification and technicality of the said
conversion is discussed in Section 4.3.
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Figure 7: Converting a rectifier transfer function to a sigmoidal form.
Black solid line is the transfer function used in the present model HE (equation 3).
It matches the transfer function used by Wong and Wang in their original
formulation [12, 94] (orange dashed line; equation 13) for a low level of input.
For a high level of input, HE(x) saturates at rmax = 500 (Hz), while the
Wong-Wang’s original version continues to scale (almost) linearly with input.

Local interaction between the populations is modulated by four coupling
parameters wpq > 0 in equation 1-2, indicating the influence from the local
population p to q, where p, q ∈ {E, I} (Figure 1 left box). These coupling
parameters reflect the local structural connectivity. The excitatory population
excites both the excitatory and the inhibitory population (via wEE and wEI
respectively), while the inhibitory population inhibits both (negative signs
precede wIE and wII).

In addition to the interaction within a brain region, the local populations
are capable of responding to external current inputs denoted as IE and II in
equation 1-2, respectively. Importantly, such input can come from other brain
regions in a globally connected network (Figure 1 right panel, dashed lines).

This leads us to the global model. Formally, we substitute IE in the local
model (equation 1) with a global input IG (equation 4),

dS
(i)
E

d t
= −

S
(i)
E

τE
+ (1− S(i)

E )γEHE

(
w

(i)
EES

(i)
E − w

(i)
IES

(i)
I + I

(i)
G (~SE)

)
+ σξ

(i)
E (t)

(4)

dS
(i)
I

d t
= −

S
(i)
I

τI
+ (1− S(i)

I )γIHI

(
w

(i)
EIS

(i)
E − w

(i)
II S

(i)
I + II

)
+ σξ

(i)
I (t) (5)

where S(i)
E and S(i)

I are the synaptic gating variable of the excitatory and the
inhibitory population of the ith brain region respectively, and ξ(i)• is a noise term
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scaled to an amplitude σ. The state of all excitatory populations is denoted as
a vector ~SE , the ith element of which is S(i)

E . The global input to the ith brain
region depends on both its connectivity with, and the ongoing state of, other
brain regions,

I
(i)
G (~SE) = G

N∑
j=1
j 6=i

CijS
(j)
E (6)

where N denotes the total number of brain areas, Cij > 0 the long-range
structural connectivity from the jth to the ith brain region and G is a global
coupling parameter that controls the overall level of interaction across brain
regions. Since Cij is only intended to represent long-range connectivity, we let
Cij = 0 for any i = j to preclude recurrent connections. For the effects of G and
Cij to be independently comparable, here we impose a normalization condition
on the matrix norm,

‖C‖∞ = max
i

 N∑
j=1

|Cij |

 ≡ 1. (7)

Since the global coupling parameter G modulates the level of input to each
brain region, one would expect it to have comparable influence on the local
dynamics as IE in the local model (equation 1).

Next, we discuss its formal connection to two well-studied mean-field models
of brain dynamics, namely, the Wilson-Cowan model (Section 4.2) [9, 47] and
the reduced Wong-Wang model (Section 4.3) [12, 49].
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parameter interpretation value
τE decay time of NMDA receptor 0.1 (s)
τI decay time of GABA receptor 0.01 (s)
γE kinetic parameter of excitatory population 0.641
γI kinetic parameter of inhibitory population 1
aE parameter of HE 310 (nC−1)
bE parameter of HE 125 (Hz)
dE parameter of HE 0.16 (s)
aI parameter of HI 615 (nC−1)
bI parameter of HI 177 (Hz)
dI parameter of HI 0.087 (s)
rmax maximal firing rate 500 (Hz)
wEE excitatory-to-excitatory coupling ∼ (nA)
wEI excitatory-to-inhibitory coupling ∼ (nA)
wIE inhibitory-to-excitatory coupling ∼ (nA)
wII inhibitory-to-inhibitory coupling 0.05 (nA)
IE external input to excitatory population ∼ (nA)
II external input to inhibitory population 0.1 (nA)
G global coupling ∼ (nA)
Cij structural connectivity between brain regions ∼
σ noise amplitude ∼

Table 1: The interpretation and value of model parameters. Here we
summarize the parameters used in equation 1-5. Most parameters assume a
fixed value, which was introduced by [12]. A “∼” indicates that this parameter
is manipulated in the present study to explore the behavior of the model.

4.2 Relation to the Wilson-Cowan model
Formally, the above model can be considered a special variant of the Wilson-
Cowan model [9, 47]. Though the specific interpretation of certain parameters
differ, the two models describe similar dynamic relations between neuronal
populations. Here we briefly review the form of the Wilson-Cowan model in
comparison to the present model.

The Wilson-Cowan model, in its initial form [47], concerns the dynamics of a
pair of interacting excitatory and inhibitory neuronal populations. The activities
of the two populations are denoted as E(t) and I(t)—the proportion of firing
excitatory/inhibitory cells averaged over a period of time (the refectory period).
The model takes the form

τE
dE

d t
= −E + (kE − rEE)SE(c1E − c2I + P ) (8)

τI
d I

d t
= −I + (kI − rII)SI(c3E − c4I +Q). (9)

τE and τI are time constants of the dynamics of the excitatory and inhibitory
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population respectively. c•’s are the coupling parameters between the two popu-
lation. Coefficients k• and r• result from a temporal coarse-graining procedure
in the initial derivation (see [47] for detail). S• is a sigmoidal transfer function,
rising monotonically from 0 to 1 with non-negative input. P and Q are external
inputs to their respective populations. If we divide both sides of equation 8-9 by
the time constants, we are looking at the same general form as equation 1-2.

The main difference is between the respective transfer functions. Wilson and
Cowan [47] chose a particular form of S for mathematical analysis:

S (x) =
1

1 + exp [−a(x− θ)]
− 1

1 + exp(aθ)
, (10)

where parameter a determines the maximal slope of the function S and parameter
θ the location of the maximal slope. Technically, Wilson and Cowan [47] only
requires S to be of a general sigmoidal form. It may reflect the average response
of a population of neurons with heterogeneous firing thresholds or heterogeneous
afferent connections. The distribution of the said thresholds or connections is
reflected in the parameters a and θ.

In other words, the choice of the transfer function and the parameters is
non-specific to a predefined microscopic model. Moreover, Wilson and Cowan
[47] took a function-oriented approach to analyzing the model. The key was
whether the model was able to produce fundamental behaviors expected from a
neural model—multistability, hysteresis, and oscillation—for some specific choice
of parameters and transfer function. Qualitative conclusions from their analysis
depend on the general geometric properties of the transfer function rather than
the specific form of equation 10.

The transfer function of the present model (equation 3) follows the general
geometric properties assumed by Wilson and Cowan [47]. The difference is that
the parameters in equation 3 are associated specifically with a microscopic model
[11], a network of leaky integrate-and-fire neurons with biologically plausible
parameters, as inherited from the reduced Wong-Wang model [12, 49]. This
choice provides a channel of correspondence between parameters of the models
at different scales of description. To expand on this point, we next elaborate on
the connection between the present model and the reduced Wong-Wang model.

4.3 Relation to the reduced Wong-Wang model
The present model can also be considered as a variant of the Wong-Wang
model [12] and its high-dimensional generalizations, here referred to as the
reduced Wong-Wang model [48, 49, 62]. In particular, we consider the model of
whole-brain dynamics [49, 62],

dS
(i)
E (t)

d t
= −

S
(i)
E

τE
+
(

1− S(i)
E

)
γEH̃E

(
w

(i)
EES

(i)
E − w

(i)
IES

(i)
I + I

(i)
G (~SE)

)
+ σξ(i)(t)

(11)

dS
(i)
I (t)

d t
= −

S
(i)
I

τI
+ H̃I

(
w

(i)
EIS

(i)
E − w

(i)
II S

(i)
I + II

)
+ σξ(i)(t), (12)
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following the same notations as in equation 4-6, where

H̃p(x) =
apx− bp

1− e−dp(apx−bp)
(13)

with p ∈ {E, I} denoting the excitatory and the inhibitory population respectively
(see Figure 7 dashed line for H̃E). The parameters ap, bp and dp were chosen
such that H̃p approximates the average firing rate of an ensemble of leaky
integrate-and-fire neurons receiving uncorrelated noisy inputs.

More specifically, the sub-threshold dynamics of the membrane potential V (t)
of each neuron can be described as

Cm
dV (t)

d t
= −gL (V (t)− VL) + Isyn(t) (14)

where Cm is the membrane capacitance, gL the leak conductance, and VL the
resting potential of the membrane. The total synaptic input current Isyn(t) is
a random process with an average µC and standard deviation σC . When V (t)
reaches a threshold Vth, the neuron emits a spike after which the membrane
potential returns to a reset voltage Vreset and stays there for a duration τref , i.e.
the refractory period.

The average firing rate ν of an ensemble of such neurons can be derived from
the Fokker-Planck approximation that describes the evolution of the membrane
voltage distribution of an ensemble of neurons (see e.g. [95, Section 1], [61]
for descriptions of the Fokker-Planck approach). This eventually leads to the
first-passage time equation (average time for crossing the threshold),

ν =

(
τref + τm

√
π

∫ Vth−Vss
σV

Vreset−Vss
σV

ex
2

(1 + erf(x))dx

)−1
(15)

where τm = Cm/gL is the membrane time constant, σV =
√
τmσC/Cm the

standard deviation of the depolarization, erf(x) the error function

erf(x) =
2√
π

∫ x

0

e−u
2

du, (16)

and Vss the steady state voltage

Vss = VL +
Isyn
gL

. (17)

The transfer function employed by Wong and Wang [12, 94], i.e. equation 13
with appropriate choice of parameters, is a good approximation of equation 15
when the input level is low.

Thus, the first passage equation 15 provides a bridge between the transfer
function (equation 13) and the single-cell level model (equation 14) incorporating
realistic biophysical parameters (Table 2). In other words, it allows one to use
empirically measurable quantities at the neuronal level to directly constrain the
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the transfer function and the entire model. This is a major difference with the
Wilson-Cowan model [9, 47] in its initial development.

parameter interpretation value
Cm membrane capacitance 0.5, 0.2 (nF)
gL leak conductance 25, 20 (nS)
τm membrane time constant 20, 10 (ms)
τref refractory period 2 (ms)
VL resting membrane potential -70 (mV)
Vth threshold for firing -50 (mV)
Vreset reset potential -55 (mV)

Table 2: Biophysical parameters of a single leaky-integrate-and-fire
neuron. If two parameter values are provided in right-most column, the first
value is for a generic pyramidal cell and the second is for a generic interneuron.
Differences between the biophysical parameters of different cell types lead to
differences in the transfer functions (equation 13).

According to the first passage equation 15, the firing rate ν is a sigmoidal
function of the input, which saturates at rmax ≡ 1/τref . This is not the
case, however, for the transfer function H̃ (equation 13). It can be seen from
equation 13 that for a large input x, the exponential term in the denominator
becomes negligible (ap, bp, and dp are all positive), and as a result, H̃p ≈ apx−bp
is approximately a linear function. To make the transfer function a better
approximation of the first passage equation and at the same time retain the
mapping between their parameters, we can simply convert the transfer function
by substituting the numerator of H̃ as below

Hp(x) =
rmax − H̃p(rmax − x)

1− e−dp(apx−bp)
. (18)

Thus, we obtain the transfer function used in the present model (equation 3).
As shown in Figure 7, Hp matches H̃p for low levels of input but flattens out
eventually at rmax as one would expect from equation 15, instead of increasing
indefinitely (e.g. black curve HE overlaps with orange curve H̃E for input lower
than 1.5 nA, and then saturates for input greater than 2 nA). Hp is therefore a
better approximation of the first passage equation 15.

In short, the present model is endowed with the geometric properties of
the Wilson-Cowan model [9, 47] and at the same time consistent with the
neuronal level-to-population level mapping of the reduced Wong-Wang model
[12, 49].
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Supplementary Materials

S1 Computation of bifurcation diagrams
The computation of bifurcation diagrams (Figure 5) was carried out in MATLAB,
utilizing the build-in function fsolve. Given a proper initial guess, fsolve
provides the coordinates of a nearby fixed point and the Jacobian matrix at the
fixed point. The spectrum {λk}2Nk=1 of the Jacobian matrix is used to classify
the fixed point, where N is the number of brain regions in the model. The fixed
point is a stable equilibrium if λk is real and negative for all k. The fixed point is
associated with damped oscillation if Reλk < 0 for all k and Imλk 6= 0 for some
k. The fixed point is associated with a limit cycle if Reλk > 0 and Imλk 6= 0
for some k with the additional criteria that after a small perturbation from the
fixed point, the time-average of the solution remains close to the fixed point.
All other types of fixed points are classified as unstable. For damped oscillation
and limit cycles in the local model, the frequency of the oscillation (Figure 2) is
defined as | Imλk|/(2π).

For the local model, a 2D dynamical system, the complete characterization
of all fixed points is relatively easy by searching exhaustively through a grid of
initial guesses (as for Figure 5a-c). This approach becomes unfeasible when it
comes to the global model due to the high dimensionality. Thus, for the global
model, we implemented a recursive search: for each value of G, (1) find zeros
of equation 4-6 (main text) given a set of initial guesses that includes, if any,
the zeros for G− δG (δG = 0.01 for the present study); (2) sort the list of zeros
obtained from (1) by the average of S(i)

E ’s; (3) use the middle points between
consecutive zeros in the sorted list as initial guesses; (4) continue to use middle
points between past initial guesses as new initial guesses recursively until at
least one new zero is found or the recursion has reached a certain depth; (5)
append the new zero(s) to the list of zeros and repeat (2)-(5) until the number
of identified zeros exceeds a certain value. In the present study, we limit the
maximal depth in (4) to 8 and the maximal number of zeros in (5) to 200.

S2 Computation of BOLD signal and low-frequency power
In the present study, we are interested in not only the high-frequency activity
measurable by, for example, EEG recordings but also low-frequency fluctuations
that are often a subject of investigation in fMRI studies. Therefore, we simulated
the BOLD activities induced by the underlying neural dynamics and examine
their low-frequency properties.

BOLD (Blood-oxygen-level-dependent) activities are computed using the
Balloon-Windkessel model [1–4]. The hemodynamic response of the ith brain
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area takes the form

ṡi = zi − κisi − γi(fi − 1) (S1)

ḟi = si (S2)

τiv̇i = fi − v1/αi (S3)

τiq̇i =
fi
ρi

[1− (1− ρi)1/fi ]− v1/α−1i qi (S4)

BOLDi = V0[k1(1− qi) + k2(1− qi/vi) + k3(1− vi)] (S5)

where the interpretation and value of the parameters are given in Table S1. The
initial condition is

[si(0), fi(0), vi(0), qi(0)] = [0, 1, 1, 1] (S6)

which is a hemodynamic equilibrium state without neural activity. zi(t) is the
simulated neural activity, corresponding to the gating variable of the excitatory
populations S(i)

E (t).

parameter interpretation value

zi neuronal activity S
(i)
E

si vasodilatory signal variable
fi blood inflow variable
vi blood volume variable
qi deoxyhemoglobin content variable
κi rate of signal decay 0.65(s−1)
γi rate of flow-dependent elimination 0.41(s−1)
τi hemodynamic transit time 0.98 (s)
α Grubb’s exponent 0.32
ρ resting oxygen extraction fraction 0.34
V0 resting blood volume fraction 0.02
k1 BOLD weight parameter 7ρi
k2 BOLD weight parameter 2
k3 BOLD weight parameter 2ρi − 0.2

Table S1: Parameters of the Balloon-Windkessel model of BOLD activities,
obtained from [4].

The power spectrum for each simulated BOLD time series is computed using
Welch’s method [5], after being subsampled at 720ms intervals (matching the
TR of resting state fMRI used in the Human Connectome Project [6]). The full
power spectrum P (ω) was first normalized such that∫ ωN

0

P (ω) dω = 1 (S7)
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where ωN is the Nyquist frequency (approximately 0.7 Hz for the chosen sampling
interval). The low-frequency power is defined as

p` =

∫ 0.1

0.01

P (ω) dω. (S8)

S3 Dependency of spectral properties on local and global
structural connectivity

In Figure 6 of the main text, we illustrate with two simulated trials how high-
frequency and low-frequency dynamics depend on local excitatory-to-excitatory
connectivity wEE and the topology of the global network. To show that these
effects are not incidental, we simulated 200 trials for each of the conditions:
(1) the global network is uniform but local connectivity wEE is diverse (as in
Figure 6a,b), and (2) local connectivity wEE is identical but the global network
follows the human connectome (as in Figure 6c,d). We characterize the high-
frequency content of a spectrum as its peak frequency, i.e. the frequency at which
the spectral power is the highest (e.g. peaks in Figure 6a,c); the low-frequency
content as the integral of the power between 0.01 and 0.1 Hz (Section S2). The
dependency of these features on local (wEE) and global structural properties
(node degree) is quantified using Spearman correlation. The distributions of the
correlation coefficients (ρ) and corresponding p-values are shown in Figure S1
and Figure S2 for condition 1 and 2 respectively. Figure S1 shows that local
structural connectivity wEE strongly affects the peak frequency of the brain
region (a,c) but not so much the low-frequency power (b,d). The stronger the
local connectivity, the higher the peak frequency. Figure S2 shows that the node
degree of the global network has a strong and negative effect on the low-frequency
power, and a weak and positive effect on the peak frequency. Figure 6 illustrates
such dependencies using typical trials (median correlation coefficients) from the
distributions (Figure S1-S2).
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Figure S1: Dependency of peak frequency and low-frequency power
on local excitatory-to-excitatory connectivity. 200 trials are simulated
following the same parameter setting as Figure 6a,b, where the global network is
uniform but the local connectivity wEE ’s spread between 1 to 2 for different brain
regions. The noise terms in equation 4-5 make these trials different realizations
of the same noisy process. The peak frequency of the spectra, e.g. from 10 to
30 Hz in Figure 6a, strongly depends on local connectivity wEE (a: ρ’s all close
to 1; c: p-values all less than 0.05). In contrast, low-frequency power does not
significantly depend on wEE (b: ρ’s distribute around zero; d: p-values spread
between 0 and 1). Figure 6b shows this lack of dependency in an example trial
that corresponds to the median of the distribution (b).
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Figure S2: Dependency of peak frequency and low-frequency power
on node degree in the global network. 200 trials are simulated following
the same parameter setting as Figure 6c,d, where the local connectivity wEE ’s
are the same across brain regions but the global-network reflects the human
connectome (see main text). The peak frequency of the spectra, e.g. between
0 and 30 Hz in Figure 6c, moderately increases with the node degree of each
region (a: positive ρ’s around 0.32; c: p-values all less than 0.05). Low-frequency
power decreases more significantly with node degree (b: ρ’s distribute around
-0.6; d: p-values all less than 0.05). Figure 6d illustrates this dependency with
an example trial that corresponds to the median of the distribution (b).

S4 Analysis of the local model
We can see from the numerical analysis that the nullclines (dashed lines in
Figure 3) crucially constraint the dynamics of the local model (equation 1-3).
Here we take a closer look at their shapes. Red nullcline indicates where there is
only vertical flow,

dSE
d t

= 0

⇒− SE
τE

+ (1− SE)γE HE(wEESE − wIESI + IE) = 0

⇒SI = f(SE) =
wEE
wIE

SE −
1

wIE
H−1E

(
SE

τEγE(1− SE)

)
+

IE
wIE

, (S9)
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and blue nullcline indicates where there is only horizontal flow,

dSI
d t

= 0

⇒− SI
τI

+ (1− SI)γI HI(wEISE − wIISI + II) = 0

⇒SE = g(SI) =
wII
wEI

SI +
1

wEI
H−1I

(
SI

τIγI(1− SI)

)
− II
wEI

. (S10)

What is common between the two nullcines, SI = f(SE) and SE = g(SI), is
that their shape crucially depends on a linear term Sp and the inverse of the
transfer function H−1p for p ∈ {E, I}. Both terms are monotonically increasing
with Sp (H−1p (•) and Sp/(1− Sp) are both monotonically increasing function;
so is their composition). H−1p is only defined on a domain between 0 and rmax,
for which the nullclines are confined within the interval[

0, 1− 1

rmaxτpγp

]
. (S11)

Within this interval SI = f(SE) (equation S9; red nullcline), overall, goes down
from +∞ to −∞, while SE = g(SI) (equation S10; blue nullcline) goes up from
−∞ to +∞. This results from the dominant effect of H−1p for a very large or
very small input.

In between these extremes, the effect of the linear term is more pronounced.
This is especially the case for SI = f(SE) (red nullcline): the linear term mono-
tonically increases with SE , counteracting the descending trend of −H−1E . Given
a sufficiently strong excitatory-to-excitatory connection wEE (self-excitation),
the linear term “twists” the nullcline counterclockwise, creating an ascending
branch in the middle. If we balance the level of self-excitation with inhibitory-
feedback—let wEE = wIE—equation S9 becomes

SI = f(SE) = SE −
1

wEE
H−1E

(
SE

τEγE(1− SE)

)
+

IE
wEE

. (S12)

In this simplified case, increasing self-excitation wEE reduces the influence of
H−1E such that the slope of middle branch approaches 1.

For SE = g(SI) (equation S10), the linear term and the H−1I term increase
together, so that SE = g(SI) (blue nullcline) is always monotonically increasing.
Given a fixed wII , SE = g(SI) increases with SI at an overall slower rate for
larger wEI , or more conveniently seen as SI = g−1(SE) increasing faster with SE
for larger wEI . Intuitively, increasing wEI twists SE = g(SI) counterclockwise,
seen as the middle segment of the blue nullcline becoming more vertical.

We have discussed above how local connectivity wEE and wEI influence
the gross geometry of the nullclines—twisting the middle segment of the curve
counterclockwise. But how are these geometric changes going to affect the
dynamics? We show below that they critically control the multistability and
oscillation in the local model.
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Multistability. For the local model to be multistable, SI = f(SE) (red
nullcline) must have an ascending branch, i.e. f(SE) cannot be monotonically
decreasing.

Proof. Suppose that f(x) and g−1(x) are monotonic functions for x ∈ [0, 1].
Specially, g−1(x) is monotonically increasing; f(x) is monotonically decreasing.
Assume that f(x) and g−1(x) intersect at two points x1 6 x2, i.e. f(x1) =
g−1(x1) and f(x2) = g−1(x2). Since g−1(x) is monotonically increasing, we
have g−1(x1) 6 g−1(x2), which implies f(x1) 6 f(x2). Meanwhile, since f(x) is
monotonically decreasing, f(x1) > f(x2). Thus, we have f(x1) = f(x2), and by
monotonicity, x1 = x2. In other words, if the two functions intersect, there must
be a unique intersection.

Since g−1(x) is always monotonically increasing and the existence of multista-
bility requires the existence of multiple intersections between g−1(x) and f(x),
a monotonically decreasing f(x) implies that the system cannot be multistable.
In other words, if the system is multistable, then f(x) cannot be monotonically
decreasing.

This result highlights the importance of self-excitation wEE in equation S9
and equation S12—multistability can only occur when wEE is sufficiently large.
Correspondingly in the numerical result (Figure 2), the region of multistability
appears only for larger wEE ’s.

Note that the above argument is not restricted to the present model, but
applicable to models that share the geometry form of the Wilson-Cowan model in
general. Nevertheless, one would hope to know how large a wEE is large enough
for multistability to be possible, and this depends on the specific formulation
of the transfer function (equation 3) and the underlying assumptions about
neuronal level properties (equation 15). Ideally, to know the minimal wEE , one
need to find the minimal slope of H−1E (u(SE)) with respective to SE , where
u(SE) := SE/ (τEγE(1− SE)). The exact solution is, however, rather perplexing
to calculate. Here we provide a rough, but simple, estimation instead. The slope
of interest is

d

dSE
H−1E (u(SE)) =

dH−1E (u)

du

du

dSE
(S13)

=

(
H−1E

)′
(u)

τEγE(1− SE)2
. (S14)

Instead of finding the minimum of equation S14, we aim to find a representative
point S∗E such that equation S14 is relatively small.

One option is to use the minimum of the numerator. The minimum of the
numerator

(
H−1E

)′
(u) is simply the reciprocal of the maximum of H ′E(v), where

v = H−1E (u). By design, HE reaches its maximal slope aE at the inflection point
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x̂, where HE(v) = rmax/2. That is, we need

S∗E
τEγE(1− S∗E)

=
rmax

2

S∗E =
1

2 r−1maxτ
−1
E γ−1E + 1

.

But note here that, in the case where rmax is a large number, the representative
point S∗E is very close to one, which further results in a small denominator in
equation S14 and a large slope for H−1E . Thus, the inflection point of HE(v) is
not a very good choice.

To avoid the small denominator problem for equation S14, we need to choose
a S∗E as small as possible while HE(v) remains close to the line aE v − bE . For
this purpose, we take v∗ to be the intersection between the line aE v − bE and
the horizontal axis,

aE v
∗ − bE = 0

⇒ v∗ =
bE
aE

⇒HE(v∗) ≈ 1

dE
, H ′E(v∗) ≈ aE

2
(S15)

(approximate values can be obtained from the Taylor expansion of ĤE near v∗).
Given equation S15, we need

S∗E
τEγE(1− S∗E)

=
1

dE
(S16)

⇒S∗E =
1

dEτ
−1
E γ−1E + 1

(S17)

and

dH−1E (u(SE))

dSE

∣∣∣∣
SE=S∗

E

=
2

aEτEγE(1− S∗E)2

=
2(1 + d−1E τEγE)2

aEτEγE
=: hE . (S18)

Now for the nullcline SI = f(SE) to have a positive slope at S∗E , one simply
needs

wEE > hE . (S19)

Here hE is approximately 0.2 based on the present parameter choices, inherited
from Wong and Wang’s initial derivation [7]. This result is confirmed numerically
by the bifurcation diagrams (Figure 5a-c vs. Figure S3a) of the local model—
multistability exists for some level of input IE when wEE > 0.2.
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Oscillation. Now we look for the conditions for oscillation to emerge. Here we
are mainly concerned with the oscillation occurring on the ascending segment of
SI = f(SE) (red nullcline). Following a similar argument as Wilson and Cowan
[8], one notice that for the flow around a fixed point—an intersection between
the nullclines—to have consistent rotation, the nullcline g−1(SE) (blue) must
have a greater slope than f(SE) (red nullcline). Qualitatively, one would expect
oscillation to be induced by increasing wEI , which twists g(SI) (blue nullcline)
counterclockwise. This expectation is confirmed by the numerical results in
Figure 2a-d: oscillation emerges for sufficiently large wEI for fixed points on the
ascending branch of SI = f(SE) (Figure 3a-d).

Quantitatively, we consider the derivative of the two nullclines at a respective
representative point. First, we extend the results in equation S17-S18 to the
second nullcline SE = g(SI) (blue):

S∗I =
1

dIτ
−1
I γ−1I + 1

(S20)

hI : =
dH−1I (u(SI))

dSI

∣∣∣∣
SI=S∗

I

=
2(1 + d−1I τIγI)

2

aIτIγI
. (S21)

For parameters used in the present study, hI ≈ 0.4. We have the slope of the
two nullclines at their respective representative points,

f ′(S∗E) =
wEE − hE

wIE
(S22)

g′(S∗I ) =
wII + hI
wEI

, (S23)

and we need

1

g′(S∗I )
> f ′(S∗E) (S24)

⇒ wEI
wII + hI

>
wEE − hE

wIE

⇒wEI >
(wEE − hE)(wII + hI)

wIE
. (S25)

With balanced inhibitory feedback wIE = wEE , we have

wEI > (1− hE/wEE)(wII + hI). (S26)

For very large wEE , one simply need

wEI > wII + hI . (S27)

Given the present parameter choices, we need wEI > 0.45 to induce oscillation
for some level of input IE and II . This is in line with the numerical results in
Figure 2. For hE > 0, as assumed here, lowering wEE also lowers the threshold
for oscillation.
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Linear stability analysis. In addition to the presence of oscillation, one
would also want to know if such oscillation is sustainable or damped. Here we
extend the above analysis by linearizing the system near a specific fixed point. A
fixed point is where the two nullclines (equations S9-S10) intersect. Conveniently,
we let them intersect at their respective representative points (S∗E , f(S∗E)) and
(g(S∗I ), S∗I ) (see equation S17 and equation S20),

S∗E = g(S∗I ) (S28)
f(S∗E) = S∗I . (S29)

The two equations can be satisfied by the appropriate choice of IE and II . The
fixed point of our choice (S∗E , S

∗
I ) inherits a couple of properties from the above

analysis, which we shall soon see. First, we define

dSE
d t

= F (SE , SI) := −SE
τE

+ (1− SE)γE HE(wEESE − wIESI + IE) (S30)

dSI
d t

= G(SE , SI) := −SI
τI

+ (1− SI)γI HI(wEISE − wIISI + II). (S31)

At the fixed points, we have from equation S30

HE(wEES
∗
E − wIES∗I + IE) =

S∗E
τEγE(1− S∗E)

(S32)

=
1

dE
(by definition, c.f. equation S16) (S33)

which implies that

IE =
bE
aE
− wEES∗E + wIES

∗
I (S34)

and

H ′E(wEES
∗
E − wIES∗I + IE) =

aE
2

(per equation S15). (S35)

Similarly from equation S31, we have

HI(wEIS
∗
E − wIIS∗I + II) =

S∗I
τIγI(1− S∗I )

=
1

dI
(S36)

II =
bI
aI
− wEIS∗E + wIIS

∗
I (S37)

H ′I(wEIS
∗
E − wIIS∗I + II) =

aI
2
. (S38)
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Now we are take the partial derivatives of F and G at (S∗E , S
∗
I ),

∂F

∂SE

∣∣∣∣
(S∗
E ,S

∗
I )

= − 1

τE
− γEHE(wEES

∗
E − wIES∗I + IE)

+ (1− S∗E)γEwEEH
′
E(wEES

∗
E − wIES∗I + IE)

= − 1

τE
− γE
dE

+ wEEγEaE(1− S∗E)/2 (S39)

∂F

∂SI

∣∣∣∣
(S∗
E ,S

∗
I )

= −(1− S∗I )wIEγEH
′
E(wEES

∗
E − wIES∗I + IE)

= −wIEγEaE(1− S∗I )/2 (S40)
∂G

∂SE

∣∣∣∣
(S∗
E ,S

∗
I )

= (1− S∗I )wEIγIH
′
I(wEIS

∗
E − wIIS∗I + II)

= wEIγIaI(1− S∗I )/2 (S41)
∂G

∂SI

∣∣∣∣
(S∗
E ,S

∗
I )

= − 1

τI
− γIHI(wEIS

∗
E − wIIS∗I + II)

− (1− SI)wIIγIH ′I(wEIS∗E − wIIS∗I + II)

= − 1

τI
− γI
dI
− wIIγIaI(1− S∗I )/2. (S42)

For simplicity, let parameters

αp : =
1

τp
+
γp
dp

(S43)

βp : = γpap(1− S∗p)/2 (S44)

=
γpapdp

2(dp + γpτp)
(S45)

for p ∈ {E, I}. Note that by definition, both αp and βp are positive. Given
parameters used in the present study, we have αE ≈ 14, αI ≈ 111, βE ≈ 71, and
βI ≈ 276.

We write the Jacobian matrix as

J =

(
−αE + βEwEE −βEwIE

βIwEI −αI − βIwII

)
. (S46)

The eigenvalues of the Jacobian are

λ1,2 =
trJ±

√
tr2 J− 4 detJ

2
(S47)

where

trJ = −αE − αI + βEwEE − βIwII (S48)
detJ = αEαI + αEβIwII − αIβEwEE + βIβE(wIEwEI − wEEwII). (S49)
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Assuming that the system is already oscillatory near the fixed point, i.e. tr2 J <
4 detJ, to have sustained oscillation (limit cycle), we need

trJ > 0

⇒wEE > (αE + αI + βIwII)/βE . (S50)

Given the parameters used in the present study, the emergence of limit cy-
cles requires wEE > 2. Correspondingly in the numerical results (Figure 2),
equation S50 provides an estimate of the lower bound of the Hopf bifurcation
(gray dashed line). Note that stronger inhibitory-to-inhibitory connection wII
increases the minimal wEE required to induce sustained oscillation. Overall,
these analyses show that sustained oscillation requires both strong self-excitation
and a sufficiently active inhibitory population.

In summary, we have shown analytically how structural connectivity wEE
and wEI critically shape the dynamics—in this very low-dimensional parameter
space, the system can easily switch between qualitatively different behavior. In
particular, excitatory-to-inhibitory connectivity wEI controls the emergence of
oscillation; excitatory-to-excitatory connectivity wEE controls both the emer-
gence of multistability and sustained oscillation. The qualitative description
of the system only depends on the gross geometric form of the Wilson-Cowan
model, but the exact boundaries between regimes depend on the specific transfer
function and the associated biophysical constraints.

S5 Analysis of the global model
Now we take a look at the deterministic version of the global model,

dS
(i)
E

d t
= −

S
(i)
E

τE
+ (1− S(i)

E )γEHE

(
w

(i)
EES

(i)
E − w

(i)
IES

(i)
I + I

(i)
G (~SE)

)
(S51)

dS
(i)
I

d t
= −

S
(i)
I

τI
+ (1− S(i)

I )γIHI

(
w

(i)
EIS

(i)
E − w

(i)
II S

(i)
I + II

)
(S52)

where

I
(i)
G (~SE) = G

N∑
j=1
j 6=i

CijS
(j)
E . (S53)

In this case, the nullclines are hyper-surfaces,

w
(i)
IES

(i)
I = f (i)

(
~SE

)
:= w

(i)
EES

(i)
E −H

−1
E

(
S
(i)
E

τEγE(1− S(i)
E )

)
+G

∑
j 6=i

CijS
(j)
E

(S54)

w
(i)
EIS

(i)
E = g(i)

(
S
(i)
I

)
:= w

(i)
II S

(i)
I +H−1I

(
S
(i)
I

τIγI(1− S(i)
I )

)
− II . (S55)
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From equation S54 one can see that the local effect of global coupling is simply
tilting the nullcline S(i)

I = f (i)
(
~SE

)
/w

(i)
IE upwards with respect to S(j)

E .

The tilting of the nullcline S(i)
I = f (i)

(
~SE

)
/w

(i)
IE impact its number of

intersections with S
(i)
E = g(i)

(
S
(i)
I

)
/w

(i)
EI in each level set of G

∑
j 6=i CijS

(j)
E .

The number of intersections consequently constrains the number of stable states.
A precise characterization of intersections is beyond the scope of the present
work. Nevertheless, we hope to provide a few insights about the global geometry
below.

Multistability. Following a similar argument as for the local model, we first
show that, without global interaction (i.e. G = 0), the system cannot be multi-
stable, if wEE is sufficiently small such that f (i)(~SE) monotonically decreases
with S(i)

E for all i. As shown above, the monotonicity condition implies that each
local node by itself is not multistable.

Proof. Assume there are at least two distinct fixed points of the system: ~S∗

and ~S∗∗, where ~S = (~SE , ~SI) and ~Sp = (S
(1)
p , · · ·S(i)

p , · · ·S(N)
p ) for p ∈ {E, I}.

Since they are distinct points, there exists an 0 < i 6 N such that S∗(i)E 6= S
∗∗(i)
E

(S∗(i)I 6= S
∗∗(i)
I implies S∗(i)E 6= S

∗∗(i)
E due to the monotonicity of g). Without loss

of generality, we let S∗(i)E < S
∗∗(i)
E .

Since we know that g−1 (i)(w
(i)
EIS

(i)
E ) is always a monotonically increasing

function, we have

g−1 (i)(w
(i)
EIS

∗(i)
E ) < g−1 (i)(w

(i)
EIS

∗∗(i)
E ) (S56)

⇒S
∗(i)
I < S

∗∗(i)
I , (S57)

which also implies that

f (i)
(
~S∗E

)
< f (i)

(
~S∗∗E

)
(S58)

by definition of the nullcline S(i)
I = f (i)

(
~SE

)
/w

(i)
IE , for any choice of G and Cij .

Now if f (i)(~SE) is monotonically decreasing with respect to S(i)
E , we know

that at least for G = 0,

f (i)
(
~S∗E

)
> f (i)

(
~S∗∗E

)
, (S59)

which leads to a contradiction. Thus, if the system has multiple fixed points,
f (i)(~SE) cannot be monotonically decreasing with respect to S(i)

E for all i when
G = 0.

However, given a sufficiently large global coupling, especially for G > 1,
multistability becomes possible.
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Proof. Following the above proof, the assumption S
∗(i)
E < S

∗∗(i)
E leads us to

equation S58, or ∆G < 0, where

∆G := f
(i)
G

(
~S∗E

)
− f (i)G

(
~S∗∗E

)
(S60)

for any global coupling G > 0.
On the other hand, for the special case of G = 0, we can plug equation S54

into the definition S60 and have

∆0 = f
(i)
G=0

(
~S∗E

)
− f (i)G=0

(
~S∗∗E

)
= w

(i)
IE

(
S
∗(i)
I − S∗∗(i)I

)
(S61)

= f
(i)
G=0

(
S
∗(i)
E

)
− f (i)G=0

(
S
∗∗(i)
E

)
> 0, (S62)

by our assumption that f (i)G (~SE) is a monotonically decreasing function with
respect to S(i)

E . Since by definition, the coordinates of each fixed point is bounded
between 0 and 1, we have

0 < ∆0 6 w
(i)
IE . (S63)

In the case of G = 0, this leads to a contradiction ∆G > 0, as we have already
shown above.

Now we consider what happens when G > 0. Again, by plugging equation S54
into the definition S60, we have

∆G = ∆0 +G
∑
j 6=i

CijS
∗(j)
E −G

∑
j 6=i

CijS
∗∗(j)
E

= ∆0 +G
∑
j 6=i

Cij(S
∗(j)
E − S∗∗(j)E ). (S64)

We need a bound on the second term in equation S64. Since G > 0 and Cij > 0,∣∣∣∣∣∣G
∑
j 6=i

Cij(S
∗(j)
E − S∗∗(j)E )

∣∣∣∣∣∣ 6 G
∑
j 6=i

Cij

∣∣∣(S∗(j)E − S∗∗(j)E )
∣∣∣

6 G
∑
j 6=i

Cij (since 0 6 S
(j)
E 6 1)

6 G (by equation 7).

This gives us

∆0 −G 6 ∆G 6 ∆0 +G. (S65)

Thus, contradiction with equation S58 is inevitable if G < ∆0. On the other
hand, by equation S63, we know that for G > ∆0, there exists some ~S∗E and ~S∗∗E
for some global network Cij such that ∆G < 0 consistent with equation S58.
Thus it is possible for the global model to be multistable if G > ∆0, especially
if G > w

(i)
IE , or G > w

(i)
EE given matched inhibitory feedback wEE = wIE . This

does not mean, however, that the system has to be multistable, due to the
dependency on Cij .
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To summarize, the above analyses suggest that a collection of brain regions
that have no independent memory capacity (i.e. multistability) can acquire
memory capacity when connected to each other in a global network, given
sufficient global coupling. We further support this claim with numerical analysis
(Figure S3). We refer to this kind of memory as synergistic memory—it is an
emergent property that the parts themselves do not possess.

Figure S3: Synergistic memory between monostable nodes. Three bifur-
cation diagrams are shown for local parameters wEE = 0.1 and wEI = 0.35.
They correspond to Figure 5a, d, g but with a lower wEE such that each local
node by itself is monostable for any level of input (a). While each local node
is completely monostable (no memory capacity), once there is sufficient global
coupling G between them, the whole brain acquires memory capacity (b, c) that
cannot be attributed to the parts alone—synergistic memory. Nevertheless, the
size of the global memory capacity is still fundamentally constrained by the
complexity of the local node (42 attractor branches in (c), very small compare
to Figure 5g, h, i). See text for further discussion.

What we have not addressed in the above analyses is to what extent the
global system is multistable—what is the number of stable states, or the size of
the memory capacity—and what are the contributions from local self-excitation
and global network connectivity. An analytical approach to this problem is
difficult; thus, it is mainly addressed numerically (c.f. Figure S3 and Figure 5).
Nevertheless, we provide an intuitive argument below as to how local and global
connectivity affects the relevant geometrical properties of the dynamical system.

Local origin of geometrical complexity. At an intuitive level, the number
of intersections between these hypersurfaces (equation S54-S55) is likely to
increase with the number of folds of each surface. In the present case, the folding
of hypersurfaces entails the temporary reversal of the sign of its partial derivative
along a certain direction. Observe equation S54 and see that global coupling
cannot create any folding of the surfaces. Thus, the geometrical complexity of
the nullclines purely depends on the local properties of each node, in particular,
the folding effect of self-excitation w(i)

EE .
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The effect of global coupling. Without global coupling (G = 0), the number
of fixed points of the global model is simply

n =
N∏
i=1

n
(i)
0 6

(
max
i
n
(i)
0

)N
(S66)

where n(i)0 is the number of fixed points for each corresponding local model when
IE = 0. Introducing global coupling (G 6= 0) tilts each surface (equation S54) in a
way dependent on the structure connectivity Cij . This may remove or introduce
new intersections between the surfaces without changing the geometrical com-
plexity of these surfaces. Thus, global coupling allows system-level multistability
to be created synergistically, given appropriate structural connectivity Cij .

In summary, local and global coupling produce different geometrical effects
on the system and jointly affect the number of possible stable states.
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