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ABSTRACT
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A fundamental question in Complexity Science is how numerous dynamic pro-

cesses coordinate with each other on multiple levels of description to form a complex

whole – a multiscale coordinative structure (e.g. a community of interacting people,

organs, cells, molecules etc.). This dissertation includes a series of empirical, theo-

retical and methodological studies of rhythmic coordination between multiple agents

to uncover dynamic principles underlying multiscale coordinative structures. First,

a new experimental paradigm was developed for studying coordination at multiple

levels of description in intermediate-sized (N = 8) ensembles of humans. Based

on this paradigm, coordination dynamics in 15 ensembles was examined experimen-

tally, where the diversity of subjects movement frequency was manipulated to induce

different grouping behavior. Phase coordination between subjects was found to be

metastable with inphase and antiphase tendencies. Higher frequency diversity led

to segregation between frequency groups, reduced intragroup coordination, and dis-

persion of dyadic phase relations (i.e. relations at different levels of description).

Subsequently, a model was developed, successfully capturing these observations. The

model reconciles the Kuramoto and the extended Haken-Kelso-Bunz model (for large-

v



and small-scale coordination respectively) by adding the second-order coupling from

the latter to the former. The second order coupling is indispensable in capturing

experimental observations and connects behavioral complexity (i.e. multistability) of

coordinative structures across scales. Both the experimental and theoretical studies

revealed multiagent metastable coordination as a powerful mechanism for generating

complex spatiotemporal patterns. Coexistence of multiple phase relations gives rise

to many topologically distinct metastable patterns with different degrees of complex-

ity. Finally, a new data-analytic tool was developed to quantify complex metastable

patterns based on their topological features. The recurrence of topological features

revealed important structures and transitions in high-dimensional dynamic patterns

that eluded its non-topological counterparts. Taken together, the work has paved the

way for a deeper understanding of multiscale coordinative structures.
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CHAPTER 1

INTRODUCTION

How multiple interacting components generate complex behavior at multiple levels

of description is one of the most fundamental problems of Complexity Science. The

present work probes for general principles of multiagent coordination dynamics in

complex systems, by means of experimental investigation of rhythmic coordination

between multiple people (Chapter 2), theoretical modeling of these experimental data

(Chapters 3) and developing a topology-based method for characterizing complex

dynamic patterns (Chapter 4). While preexisting studies primarily focused on systems

of very many or only a few components (large- vs. small-scale), the present analyses

are grounded on intermediate-sized ensembles (mid-scale), which are large enough

be to be examined on multiple levels of description and small enough to yield to

systematic experimental manipulations. In the following chapters, we show how the

study of mid-scale coordination connects phenomena and theories of coordination

dynamics across scales.

Specific backgrounds for individual studies are supplied in their respective chap-

ters (Chapter 2-4), each of which can be read as a stand-alone piece. The present

chapter provides a general context and motivation. We first clarify what kind of

complex systems we are talking about (as a colleague once said “1000 Complex Sys-

tem scientists have 1000α definitions of Complexity, with α > 1”) and what kind of

principles the present work aims to, ultimately, provide a window into (Section 1.1).

We then review key phenomena and theories of large- (Section 1.2) and small-scale

(Section 1.3) coordination pertinent to the present work. Finally, we explain why the

study of mid-scale coordination is necessary and what we aim to accomplish with it.
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1.1 COMPLEX SYSTEMS AND MULTISCALE STRUCTURES

Living animals are constantly on the move. It is one of the most
characteristic things about them. Often we can see them running about,
breathing, catching food and eating it, and so on. If we look closer we find
that an animal is made up of different organs, and in all of them there is
something going on all the time. On an even smaller scale, the organs are
built out of cells, little lumps of living matter, each containing a special
kernel or nucleus. And each cell is always full of activity. [...] there are
incessant chemical actions and reactions.

In a living organism these changes are not isolated but are adjusted
to one another so that the right operations are carried out to produce the
right quantities of the various products. It is because we are so impressed
at the way in which all the separate processes work together harmoniously
that we call animals “organisms”. [...] If there is a “secret of life”, it
is here we must look for it, among the causes which bring about the
arrangement of innumerable separate processes into a single harmonious
living organism.

– C. H. Waddington [1]

These two paragraphs summarize nicely all central characteristics of the type of

complex systems relevant to our inquiry. First, such a system is dynamical, and its

dynamics is organized in multiple, nested levels of descriptions. Second, such organi-

zation comes from certain non-trivial coordination between many separate processes.

We may call such a complex system a multiscale coordinative structure.

Living animals are perhaps the most prominent examples of multiscale coordina-

tive structures as here suggested by Waddington [1], but similar properties are also

exhibited by complex social systems [2, 3], which can be thought of as an extension

to the levels of living animals. Moreover, what is most intriguing is that there are

such shared organizational principles across physical, biological, social, and artificial

systems [4, 5].

The question is what kind of coordination, under what conditions, make multiple

separate processes one single multiscale structure, i.e. unifying them but without

losing complexity. One observation is that individual participants at a given level of

a multiscale coordinative structure behave in a qualitatively different and often more

2



sophisticated manner than when they are outside of such a structure (i.e. emergent

behavior [6–8]). For example, four elements – O, C, H, N – make up 96% of human

body mass [9], but their daily activities can be vastly different depending on whether

they are in an living animal or in a soup. The same can be said about human

behavior in a civilization [10] or organized crime [11] compared to what it is outside

of such social institutions. This means that multiple interaction patterns of lower-

level components can all be stable (in the real world of course, what is stable always

depends on the time scale at which stability is defined). But once certain patterns are

formed (those that lead to a multiscale coordinative structure), the resulting higher-

level structures must provide additional guidance to the behaviors at lower levels to

the extent that, in return, they themselves are reinforced.

To study this problem theoretically, one first needs sufficiently general mathemat-

ical models of coordination dynamics that are restricted to neither a single level of

description nor the type of behavior of a specific constituting substance. One would

also want those models to be, in principle, able to capture some of the qualitative

features above in more definite terms. Most importantly, one would not want such

models to be detached from reality so that they could never be tested in, or provide

understanding of, any specific system. There is likely to be a family of models sat-

isfying these criteria. If that is the case, we can proceed to find even more general

mathematical principles that define this family of models.

One easy way to start is to model a general behavior (behavior that can be ob-

served in many systems) based on empirical observations of such behavior in a specific

system. This is exactly what we have done in this dissertation. The general behavior

is rhythmic coordination (see Section 2.1), and the specific system to provide empiri-

cal data is an ensemble of humans (Chapter 2). Subsequently, we captured empirically

observed behavior on multiple levels of description with a single model (equation 3.1

of Chapter 3). This model also reconciled two preexisting and well-known models of

3



coordination, namely, the Kuramoto model [12] (devised to capture gross-level statis-

tical features in large-scale coordination) and the extended Haken-Kelso-Bunz (HKB)

model [13] (devised to capture finer dynamics in small-scale coordination), which were

developed independently from each other. Nevertheless, both models share a concep-

tual origin in Synergetics [14–17], “the science of cooperation”, founded by Hermann

Haken (the connection is evident in the Preface of [12] and the name HKB), which

specifically deals with collective pattern generation in multi-component systems via

self-organization processes. In the following sections of this Chapter, we briefly review

these two preexisting models (the Kuramoto model in Section 1.2; the extended HKB

in Section 1.3), and discuss the key features of coordination phenomena they capture,

what is still missing, and the implications for our experimental design (Section 1.4).

1.2 LARGE-SCALE COORDINATION

Large-scale synchronization is among the most fundamental forms of collective be-

havior (synchronized flashing of fireflies, clapping of humans, firing of heart cells

etc.) [18, 19], where diverse rhythmic processes coordinate into an coherent whole.

The Kuramoto model provides a simple mathematical description of how a large

number of diverse processes become one through an incoherence-to-coherence phase

transition [12]. The model (equation 5.4.5 of [12]) takes the form

ϕ̇i = ωi −
K

N

N∑
j=1

sin(ϕi − ϕj) (1.1)

where ϕi is the phase of the ith oscillator, ωi the natural frequency of the ith oscillator

(the frequency of the oscillator when it is left alone), N the total number of oscillators,

and K ≥ 0 the coupling strength (how much each oscillator is influenced by its relative

phase to other oscillators). To represent (uncoupled) diversity in the population, the

natural frequencies ωi follow a random distribution with probability density function

P (ω) symmetric around zero. Collective behavior is described by a complex order
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parameter (mean field of all oscillators),

Z = r eiΨ =
1

N

N∑
j=1

eiϕj (1.2)

which can be thought of as a macro oscillator with amplitude r and phase Ψ. After

a change of variable, equation (1.1) becomes

ϕ̇i = ωi −Kr sin(ϕi −Ψ) (1.3)

which states that each oscillator is entrained by the macro oscillator toward phase-

locking (i.e. to be in a constant relative phase to the order parameter). It is apparent

that whether the population behaves coherently will depend on how strong the en-

trainment is, determined by the percentage of oscillators that has already become

phase-locked (reflected by r) and the coupling strength K. In fact, K must surpass

a critical value for coherent behavior at a macro level to occur,

Kc =
2

πP (0)
(1.4)

which marks the incoherence-to-coherence transition of the population.

Comparing this type of collective behavior to a multiscale coordinative structure

(Section 1.1), one immediately notices a problem – once oscillators are absorbed into

the whole, they behave identically and therefore are no longer separate processes.

Synchronization as described here produces order without complexity, and what we

need is order with complexity.

There are at least two ways to mitigate this loss of behavioral complexity at the

micro level. One is to consider a more complex coupling function, e.g., to include

more Fourier modes,

ϕ̇i = ωi −
K

N

N∑
j=1

M∑
k=1

ck sin k(ϕi − ϕj) (1.5)

with integer M > 1 and ck the coefficient for the kth Fourier mode. This allows

multiple phase clusters to coexist in the coherence regime [20]. Another is to look
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into the incoherence regime itself (K < Kc), i.e. coordination without phase-locking,

which may sound like an oxymoron but the reason will become clear later on (e.g. in

Section 1.3 and Chapter 3).

Now that one is faced with infinitely many options as to what M , ck and K

should be, it is time to consult empirical data. One problem is that once we allow the

behavior of individual oscillators to diversify, the micro-level patterns are no longer

uniquely determined by this particular definition of order parameter in equation (1.2)

(e.g. [21–23]) (given that the coupling strength K and coefficient ck are unknown

a priori in empirical data). Meaning, one cannot rely on the macro statistics (i.e.

equation 1.2) alone to infer all necessary details of the coupling function. A systematic

study of micro-level dynamics will certainly help, but this is not very practical for

a large-scale system (N too big). Thus, when people want to model the micro-level

dynamics in empirical observations, they usually turn to small-scale systems. The

extended HKB [13] is an example of such small-scale models, which as we shall see is

well-grounded in empirically observed coordination phenomena.

1.3 SMALL-SCALE COORDINATION

Rhythmic coordination at a small scale is perhaps best manifested in animal loco-

motion (e.g. swimming, walking, flying). Animals often have multiple stable gait

patterns [24–26] and are able to switch between them (e.g. walk, trot, and gallop

of a horse), which may be conceived as a kind of order-to-order phase transitions.

The Haken-Kelso-Bunz (HKB) model [27] was initially developed to capture such a

transition in human bimanual coordination (using finger coordination as a proxy to

gait patterns, i.e. “let your fingers do the walking” [28]). If one moves two index

fingers up and down rhythmically, it is easy to coordinate them inphase (up together,

down together; synchronization) or antiphase (one up, the other down). The rela-

tive phase here is the collective variable or order parameter for the collective of two.
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Interestingly, if the tempo of movement is increased, there will be a point where an-

tiphase coordination is no longer stable [29]. This leads to a bistable-to-monostable

transition, which can be observed as an antiphase-to-inphase transition if two fingers

initially coordinated antiphase.

To capture these phenomena, the HKB model describes the coordination dynamics

in the form

φ̇ = −a sinφ− 2b sin 2φ (1.6)

where φ is the relative phase between two oscillators, a the first order coupling

strength, and b the second order coupling strength (i.e. coefficients of first two Fourier

modes). It is the ratio between the second to first order coupling k = b/a that de-

termines whether the system is bistable or monostable. When the coupling ratio is

greater than a critical value k > kc = 1/4, the system has two stable fixed points,

one at inphase φ = 0 (in radian throughout this Chapter) and the other at antiphase

φ = π; when k < kc, the system only has one stable fixed point at inphase. The crit-

ical coupling ratio kc hence marks the bistable-to-monostable transition, capturing

key observations in human behavior [29].

The existence of an order-to-order transition is an important distinction between

the HKB (equation 1.6) and the Kuramoto model (equation 1.1), as the latter only

accommodates disorder-to-order or order-to-disorder transitions. On the other hand,

the HKB model does not actually have a disorder regime. Why? This has to do

with the left-right symmetry of the bimanual coordination task used in the human

experiment [29] – the natural movement frequency of the two fingers are very similar.

The extended HKB [13] was then put forward to address the situation where the

symmetry is broken,

φ̇ = δω − a sinφ− 2b sin 2φ (1.7)

where a term δω was added denoting the difference between the natural frequency
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of two oscillators. For a small increase of δω (from zero), the two oscillators remain

phase-locked, but the two fixed points are shifted away from being exactly inphase and

antiphase. A further increase of δω destabilizes the near-antiphase fixed point first,

and eventually the near-inphase fixed point as well. After all fixed points are gone,

the system is said to be metastable. This metastable regime of the extended HKB

model corresponds to the incoherence regime of the Kuramoto model in the sense

that there is no phase-locking. But a closer examination of the dynamics [13] shows

that in this regime components can still be highly coordinated but in a recurrent

rather than constant fashion, i.e. every time the two come close to certain phase

relations (near the old attractors inphase and antiphase) they dwell there for a while

(spending more time near old attractors than elsewhere; the time can be arbitrarily

long depending on a, b and δω) and then escape from that relation until they meet

again at another favorable relation. This phenomenon was first observed in fish

by von Holst [24], who referred to it as relative coordination. After the proposal

of metastability in the extended HKB, this type of relative coordination has been

confirmed in further experiments (see [30–36]). Importantly, metastability allows

integration and segregation to complement each other in the dynamics of coordination

such that two oscillators can be coordinated without losing individuality [37].

In short, small-scale coordination observed in living systems exhibits more com-

plexity, in the sense of multistability (multiple stable ordered patterns) and metasta-

bility (coordination without loss of separability), both captured by the extended HKB

model. In other words, the extended HKB model captures order with complexity,

which seems more suitable for describing the micro-level dynamics in multiscale co-

ordinative structures as discussed in Section 1.1. But we still have a problem – the

extended HKB is restricted to dyadic coordination, whereas a multiscale coordinative

structure requires more separate processes at the micro level to accommodate mul-

tiple levels of description. Extensions to the case of N = 4 (to capture quadrupedal

8



gaits in humans and animals [30, 38, 39]) have been made (equation 17 of [38] and

equation 1 of [39]), but the scale remains too small to be analyzed at multiple levels

of description. To have a mathematical model that is corroborated by experimental

evidence at multiple levels of description, we found it inevitable to turn to “midscale”

experiments (i.e. experiments on systems with neither too few nor too many agents).

1.4 MID-SCALE COORDINATION

In the next few chapters, we present a series of studies based on a mid-scale human

experiment (N = 8, eight-agent coordination, with a total of 120 subjects; see Chapter

2) [35]. An ensemble of eight is just large enough to form higher-level structures (e.g.

grouping of agents) and small enough for lower-level details to be systematically

examined (without combinatoric explosion). The goal is to study the coordination

dynamics of eight people on multiple levels of description and to find an appropriate

model that captures experimental observations on all those levels.

We also want to control and manipulate the boundary conditions of the system to

see how they affect coordinative behavior. But what quantities to use to measure co-

ordinative behavior and define boundary conditions? From what is common between

the phenomena and models reviewed in Section 1.2 and 1.3, it is easy to see that the

variable most relevant to the coordination dynamics is relative phase (φ for the HKB

model, or φij := ϕi −ϕj for the Kuramoto model), and what constrain the dynamics

are natural frequencies (δω the difference between natural frequencies in the HKB

model, ωi in the Kuramoto model) and coupling strength (a, b in the HKB model, K

in the Kuramoto model). We therefore designed a new experimental paradigm, which

can be considered as a physical realization of the system

ϕ̇i = ωi −
N∑
j=1

eijΓ(ϕi, ϕj) (1.8)

where we can measure ϕi the phase of each subject’s movement (the time derivative
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of phase ϕ̇i = dϕi/ dt, and relative phase φij = ϕi − ϕj can be derived from phase

dynamics), and manipulate ωi the movement frequency of each subject (by metronome

pacing) and coupling strength eij ∈ {0, 1} (considered as connectivity). Here Γ is the

unknown coupling function to be found.

Following this paradigm, a human experiment was conducted where we manipu-

lated the natural frequencies (ωi) of subjects to induce different grouping behavior

at the macro level. Coordinative behavior was examined at intergroup, intragroup,

and interpersonal levels. Detailed methods and results of this experimental study

are shown in Chapter 2, which is reproduced from the published version [35] with

minor modifications. In Chapter 3, we developed a model that successfully captured

the experimental observations on multiple levels of description, effectively by adding

the second order coupling of the HKB model to the Kuramoto model (or equation

1.5 with M = 2). Chapter 3 is a partial reproduction of the submitted version [40],

with an added section on metastability (Section 3.2.6). By studying the behavior

of the model, we found that metastable coordination between multiple agents pro-

duces both ordered and complex dynamic patterns. These metastable patterns can

be classified based on the geometrical and topological features of their corresponding

frequency graphs (each graph contains frequency time series of all agents). How-

ever, conventional tools are not designed for analyzing the geometric features of such

graphs. Hence in Chapter 4, we developed a new technique for studying multiagent

metastable coordination, using tools from computational algebraic topology. In this

proof-of-concept study, we successfully captured, using this new technique, collec-

tive phase transitions in real data, which were difficult to detect by more traditional

means. The combination of midscale experimentation, theoretical modeling and new

data analytical methods constitute the initial steps that we found necessary to take

toward a better understanding of multiscale coordinative structures.
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CHAPTER 2

THE HUMAN FIREFLY EXPERIMENT

2.1 INTRODUCTION

The function of living systems (e.g. brain, human society, ecosystem) depends on the

coordination of multiple components and processes. Such coordination depends on

intrinsic characteristics of the interacting entities as well as the form of interaction

between them [8, 16, 28, 41]. Living systems exhibit a myriad of rhythmic behav-

iors [42], e.g. humans with their daily, weekly, monthly routines [43] and physiologi-

cal rhythms [44]; brains with their waves [45]; and species with their life-cycles [46].

By virtue of its temporal symmetry (i.e. translational symmetry in time), rhythmic

coordination serves as a fine soil for experimental and theoretical study of laws of

interaction between components of dynamical systems. The study of two interacting

entities has laid experimental and theoretical foundations for addressing how coordi-

native structures form, adapt and change. Whether it is humans coordinating with

sensory stimuli [13, 47], coordinated movements within the same person [29, 48–50],

between two persons [51–57], two neuronal populations [31, 58], humans and ma-

chines [59–61], or humans and other species [62, 63], similar tendencies to form or

learn certain relative phase and frequency patterns have been observed. Essential

phase patterns, their stabilities and transitions have been well described mathemat-

ically in terms of informationally coupled dynamical systems [27, 38, 64, 65]. A little

beyond dyads, triadic and tetradic coordination have been studied mainly in animal

gaits or multilimb movements with a richer repertoire of patterns – combinations of

dyadic patterns satisfying certain symmetry constraints [25, 30, 66–68]. Beyond sys-
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tems with a relatively small number of interacting components, the focus of interest

leaps toward systems of much larger scales – e.g. flashing fireflies [69], neuronal pop-

ulations [70], or the clapping of an ardent audience [71] – whose sheer size eludes

detailed investigational techniques but favors low-dimensional measures at coarser

scales (e.g. collective synchronization). Such synchronization has been reproduced in

various coupled oscillator models, e.g. [12,72–74].

Despite this gap between systems of very few and very many components (with

rare exceptions, [75]), daily social interaction often unfolds in the middle, for example,

coordinating with a group of colleagues at work, or afterwards engaging in a variety

of gatherings with friends and families, or various forms of folk dancing and Ceilidhs.

The choice of the number of independently manipulatable components goes hand in

hand with available paradigms for approaching coordination phenomena. With very

few components, the repertoire of collective patterns and phase transitions can be

fully explored with the help of experimental manipulation and theoretical models,

but the limited size may curtail the complexity of spatial organizations. With very

many components, possible coordination patterns (described at a microlevel) become

too numerous to be studied exhaustively (due to high dimensionality of the phase

space); the large number of components also makes it difficult to utilize systematic

manipulations to carry the system through its repertoire of possible patterns. In-

stead, low-dimensional (macro) measures such as the overall level of synchronization

can serve as an order parameter to capture collective states of the system [12,16]. As

important as such descriptions of coordination are, macro measures meet their limit

when one attempts to characterize the system’s organizational complexity. Under

the broad umbrella of “incoherent” states, what are the possible organizations? How

can we explore such organizations systematically in the laboratory? To answer these

kinds of questions, a way is needed to experimentally manipulate the system’s coordi-

nation dynamics on multiple spatial and temporal scales of description. We chose an
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ensemble of intermediate size (N = 8 people) operating under the assumption that

this is big enough to reveal the system’s organizational complexity, yet small enough

to yield to experimental manipulation. Our strategy was to bridge this two-fold gap

of system size and experimental control.

We studied rhythmic movement coordination in ensembles of eight people who

were predisposed to move at the same or different frequencies. Existing empirical

findings and theories suggest that the form and stability of coordination varies with

the strength of coupling and the difference in natural frequency (frequency predispo-

sition) between components, e.g. [13,64,76]. On this basis, we hypothesized that ma-

nipulating the distribution of frequency predispositions and coupling strength should

produce different propensities for coordination, and induce different forms of collective

behavior. Because it is possible to control systematically and measure quantitatively,

frequency difference was chosen as a parameter to manipulate diversity within and

between group members. We wanted to know how different diversity conditions fa-

vor the formation, persistence and change of multiple groups that are potentially

integrated within themselves but segregated between each other.

2.2 RESULTS

Fifteen independent ensembles of eight people (N=120) participated in the study (for

details see Section 2.5 Materials and Methods). All were instructed to tap rhythmi-

cally on a touchpad. At the beginning of each trial, members of an ensemble were

each paced with a metronome; after the pacing period, they were able to see each

other’s taps as flashes (dubbed “human fireflies”) on an array of LEDs situated at eye

height in front of them. The task was to keep tapping at one’s own metronome fre-

quency (tempo) throughout the entire trial. No instructions were given to coordinate

with others.

To study how patterns of coordination among participants may form or dis-
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solve, we introduced different levels of diversity by manipulating the assignment of

metronomes to each participant. The metronomes divided the participants into two

groups of four with frequency difference (δf , also referred to as level of diversity be-

low) of either 0 Hz (1.5 vs. 1.5 Hz), 0.3 Hz (1.35 vs. 1.65 Hz), or 0.6 Hz (1.2 vs.

1.8 Hz). Within each group the four participants were paced at the same frequency.

Overall, participants followed the metronome frequency during both pacing and in-

teraction phases, in accord with instructions (see Section E in S1 file of [35]). In the

following sections, we demonstrate the main findings, which may be best read along

with the extended quantitative and theoretical analyses provided in the Supporting

Information (S1 File) of [35] (the Sections A-D of the Supporting Information in [35]

are reproduced in Appendix A for Methods-related references).

2.2.1 Spontaneous phase coordination and spatiotemporal metastability

The dynamics of relative phase between participants revealed that the participants

spontaneously coordinated in various phase patterns and switched between them, de-

spite not being given any instruction to do so. Such dynamic patterns are exemplified

in Figure 2.1 A1-A3 which shows a trial of interaction among three persons (labeled

with numbers 1, 3 and 4, reflecting spatial location on LED arrays, see legends under

A2). The evolution of their relations is shown in (A1) as trajectories of dyadic rel-

ative phase (φ, reported in radians throughout this text) for pairs 3-4 (orange) and

1-3 (magenta). When a trajectory is horizontal, the pair is strongly coordinated by

holding an (almost) constant phase relation (termed phase locking or dwell); when

the trajectory is tilted, the pair is uncoordinated (phase wrapping). Dyad 3-4 (or-

ange) engaged in a long dwell at inphase (φ ≈ 0, 10-35s in A1, largest peak in A2),

then switched to a near antiphase pattern (φ ≈ π, 40s onward in A1, small peak in

A2). Such near inphase/antiphase patterns are signs of bistability widely observed in

biological coordination [32]. Dyad 1-3 (magenta) also coordinated near inphase but
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in much briefer and recurrent dwells (around 10, 20, 30s in A1, largest magenta peak

in A2), interleaved with escapes from it. This type of intermittent or relative coor-

dination [24] characterized by consecutive epochs of dwells and escapes corresponds

to the metastable regime in models of coordination dynamics [28, 33]. Evidence for

metastabilty was often seen in single trial dynamics (see Section J in S1 file of [35] for

a statistical approach). Besides bistable and metastable coordination observed within

specific pairs of participants, a higher level interaction becomes apparent when we

examine the two pairs together: during the long dwell of Dyad 3-4, three epochs of

phase shift (bumps in orange curve at 15, 25, 35s in A1) followed precisely after each

dwell of Dyad 1-3 (magenta). Moreover, as each dwell of Dyad 1-3 became longer

than the previous one, the phase shift in Dyad 3-4 became bigger, to the point where

the shift was so big (38s) that Dyad 3-4 broke up their predominant inphase pattern

and switched to antiphase. This finding indicates that the joining of a new member

(e.g. person 1) induced changes in preexisting coordinative relations (e.g. Dyad 3-4),

strongly suggesting that multiagent coordination is more than the sum of isolated

dyads (see Section H in S1 file of [35] for a statistical analysis). As an aid to visual-

ization, the spatial arrangement corresponding to the foregoing temporal changes are

illustrated in A3.
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Figure 2.1: Coordination dynamics of phase relations among multiple agents. (A1) Ex-
emplary relative phase trajectories show the metastable phase coordination of three persons
(dynamics in φ ∈ [0, 2π) was repeated in φ ∈ [−2π, 0) for visual continuity). Shortly into
the interaction stage (10s), dyad 3-4 coordinated near inphase for 25s (relative phase φ ≈ 0
orange, flattening of φ trajectories indicates phase coordination, or dwells), then switched
into a pattern near antiphase ( φ ≈ ±π orange, 40-47s). Dyad 1-3 also dwelled around
inphase but for shorter durations (A1, magenta curve flattening around 12, 22, 32s). The
interaction shows tendencies for bistability (inphase and antiphase), as also seen in the
histograms of the relative phase (A2), with the orange distribution more pronounced at
antiphase than the magenta. (A3) shows the spatial organizations of phase coordination
among agents 1, 3, and 4 at moments corresponding to the time-axis in (A1; for interpreta-
tion see B4 below). (B1-4) shows an example of four-person interaction in similar format to
the above. Dynamics of φ (B1) reveals phase coordination on various time scales, visualized
in (B3) where the length of a bar annotates the duration of phase dwell between a pair
of participants. Dyad 1-2 (red) showed the longest dwell, Dyad 1-4 (green) a bit shorter,
and Dyad 4-3 (blue) the shortest. The coexistence of multiple timescales of coordination
gives rise to a constantly evolving spatial organization of the group, shown as a sequence of
graphs in (B4) where each node presents a participant and an edge indicates phase dwell
(color coding corresponds to B1-3, black edges are dyadic dwells whose dynamics are not
shown in B1-2; coordination within the other group, i.e. agents 5, 6, 7, 8, is not shown for
reasons of clarity).

In the experiment, epochs of phase coordination were mostly transient or inter-

mittent (i.e. metastable dwells), covering a wide range of time scales, with a mean
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duration of 4.64s (± 4.04s) and a long tail of more persistent phase patterns up to the

entire duration of interaction, about 50s (See Fig B in S1 file of [35] for distribution).

The confluence of metastability and multiple coupled agents allows the coexistence of

multiple time scales of coordination in a group, as Figure 2.1 A1-A3 already hinted

(orange – long dwell, magenta – short dwells with more frequent recurrence). Mul-

tiple coordinative time scales allow different members of a group to come together

at different times, thus allowing the group to visit a variety of spatial patterns at

different times. An example of four-person interaction is given in Figure 2.1 B1-B4

illustrated as three dyadic relative phases (dynamics in B1, distributions in B2). The

duration of phase dwells is marked in (B3): red dyad with a long dwell, green dyad

a bit shorter, and blue dyad even shorter. Such multiplicity in the time scale of

metastable coordination led the four-person group through a variety of spatial pat-

terns from moment to moment (B4) rather than to persist as a static structure (which

would be the case if, e.g., phase coordination were absolutely stable). Thus, in the

present case of intermediate sized group arrangements, spatiotemporal metastability

– coexisting tendencies for integration and segregation – is rather more characteristic

of coordination than collective synchronization [33,77].

2.2.2 Dominant patterns of coordination and their relation to diversity

When all phase relations were considered in aggregate, we found that inphase co-

ordination was clearly a dominant phase pattern (central peaks in distributions of

relative phase φ in Figure 2.2). Yet this dominance of inphase depended on both

local and global diversity. Inphase was more dominant locally within a group (par-

ticipants paced at the same frequency) than between groups (where diversity was

introduced by δf ; Figure 2.2, A1, probability density for within-group φ significantly

above chance from 0 to 0.24π, A2, for between-group φ significantly above chance

from 0.05π to 0.08π, at p̂ < 0.05, where ‘hat’ denotes Bonferroni correction for mul-
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tiple comparison throughout the text; see Section G in S1 file of [35] for confidence

intervals of chance level distribution). Globally, the dominance of inphase in the

entire ensemble decreases as diversity increases (B1-3 for δf = 0, 0.3, 0.6 Hz respec-

tively: B1 significantly above chance from 0 to 0.14π, B2 from 0 to 0.09π, p̂ < 0.05;

B3 n.s.). This suggests that inphase coordination is an important characteristic for

the formation and maintenance of coordinative structures regardless of group size,

especially when diversity is low. A much weaker preference for antiphase can also be

seen, primarily when the diversity is low (i.e. in Figure 2.2 A1 for within-group rela-

tive phase and B1 for δf = 0; based on bin-wise statistics, the antiphase is signified

by the separatrix between inphase and antiphase near π/2 whose probability density

is significantly lower than chance level, more specifically with p̂ < 0.05 at 0.48 to 0.5π

and 0.54 to 0.58π for A1, 0.4π for A2, 0.58π, 0.62π and 0.65π for B1). Considering

only epochs of strong coordination (dwells), we found a wide range of phase relations,

where antiphase, along with inphase, was also a preferable phase relation (for details

see Section F in S1 file of [35]).
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Figure 2.2: Aggregate distributions of phase relations. Blue solid lines are distributions
of relative phases in the experiment (histograms were computed and statistically tested in
the interval [0, π] then repeated in the interval [−2π, 2π] for visualization). Red dashed
lines correspond to chance level (uniform) distribution. (A1) shows relative phase between
members within the same frequency group, (A2) between different groups, (B1-3) for en-
sembles with diversity level δf = 0, 0.3, 0.6 Hz respectively. Inphase (central peak) is
clearly a dominant pattern throughout, but its dominance diminishes with the diversity pa-
rameter displayed in (B1-3). Inphase preference was more pronounced within-group (A1),
where participants shared the same initial frequency, than between-group, where frequency
diversity was introduced (A2).

Beyond patterns of phase relations, other types of coordination were observed.

One of them is a form of multifrequency coordination that binds behavior at different

frequency ratios [49, 50, 78, 79]. We studied which frequency ratios constitute pre-

ferred coordination patterns by comparing their probability density to chance levels

(computed from randomly permuted taps, see Section D in S1 file of [35] for details).

Chance level distributions reflect expected occurrence of different frequency ratios

as a result of participants’ maintaining metronome frequencies without interacting

with each other. Hence, we expected chance level distributions to peak around ratios

corresponding to the three diversity conditions, i.e. 1:1 (δ = 0 Hz), 9:11 (δf = 0.3
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Hz), and 2:3 ( δf = 0.6 Hz). Figure 2.3 shows the distribution of instantaneous

frequency ratios in terms of within-group (Figure 2.3A) vs. between-group (Figure

2.3B) coordination for different levels of diversity (blue δf = 0 Hz, red δf = 0.3 Hz,

yellow δf = 0.6 Hz). A frequency ratio is a preferred coordination pattern if its prob-

ability density (solid lines) is above chance level (light-color bands). Within-group

participants coordinated primarily at 1:1 ratio (Figure 2.3A, all p̂ ′s < 0.05), which is

consistent with the high level of phase-locking reported above. For between-group co-

ordination (Figure 2.3B),1:1 was still the preferred ratio when there was no diversity

(δf = 0 Hz, p̂ < 0.05); a higher order ratio near 2:3 was preferred when the diversity

was large (δf = 0.6 Hz; p̂ < 0.05). For intermediate diversity (δf = 0.3 Hz), the

between-group frequency coordination was barely above chance at metronome ratio

9:11 (for metronomes at 1.35 Hz and 1.65 Hz), but significantly more concentrated

than chance near 1:1 (p̂ < 0.05). In short, under appropriate diversity conditions,

lower order (1:1) and higher order (e.g. ∼2:3) frequency coordination can coexist

– a basis for complex spatiotemporal coordination. Furthermore, this type of coor-

dination with frequency ratios (one which is less straightforward to detect and less

studied) is specific to between-group interactions.
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Figure 2.3: Multifrequency coordination. Ensembles with low diversity were dominated
by 1:1 coordination, while ensembles with high diversity also steered towards higher-order
ratios. Solid lines show the probability density of frequency relations within- (A) and
between-group (B) for the 3 diversity conditions (color coded). Thin shaded areas (with
corresponding colors) are confidence intervals for null distributions (p < 0.0005 for each of
100 bins, corresponding to p̂ < 0.05 for an entire distribution using Bonferroni Correction;
generated from randomly permutated taps, which represent the expected distribution from
non-interacting agents tapping at required frequencies). For within-group relations (A),
the peaks at 1:1 are far above chance, indicative of stabilizing phase relations at the same
frequency. For between-group relations (B), low to moderate diversity (blue, red, δf = 0, 0.3
Hz) led to above-chance coordination at 1:1; in contrast, for high diversity (yellow, δf = 0.6
Hz, corresponding to metronome ratio 2:3), coordination was below chance at 1:1 but far
above chance at a higher order ratio near 2:3.

2.2.3 Segregation and integration of groups: critical diversity

Having studied coordination at the micro level (person to person), we now turn to

the macro level of integration and segregation between groups. In order to do so, we

first quantified coordination as the level of phase locking between individuals from the

same and different initial groups (i.e. within- and between-group coordination respec-

tively). Figure 2.4A shows the average results. We found that as initial frequency

difference between groups (δf) increased, phase-locking between groups weakened

dramatically (Figure 2.4A, right cluster). Interestingly, phase-locking within groups

(no diversity within-group by design) was also weakened by virtue of the difference

with the other group (Figure 2.4A, left cluster, notice orange and yellow bars signifi-

cantly shorter than blue; MANOVA, interaction effect, F (2, 7246) = 198.2, p < 0.001;

see S12 for MANOVA main effects analysis; see Section A.5 for a dynamic view).
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That is, local coordination (e.g. within group) was influenced by the larger context

(difference with other groups), as exemplified also in Figure 2.1A.

Figure 2.4: Diversity parametrically controls integration∼segregation of groups within
ensembles – the emergence of spatial scales. (A) Phase locking between groups decreased
monotonically when between-group δf increased (A, right). Within groups however (A,
left), where agents’ initial frequencies were uniform, phase locking was still affected by the
presence of another group of a different frequency (red, yellow bars significantly lower than
blue bar), demonstrating that interactions are sensitive to the multiagent context in which
they are embedded. (**p < 0.01; ***p < 0.001; error bars represent standard errors) (B)
A scatterplot reveals linear associations between phase locking within- and between-group
(each point represents a trial), whose slopes were modulated by the diversity parameter
δf (denoted by color, see legend). Linear regressions had positive slope for lower diversity
(blue and red colored lines) indicating integration of initial groups into larger coordinative
structures, while a negative slope was found for the largest diversity (yellow line), indicating
intergroup segregation. A critical parameter of diversity (δf∗) was identified that borders
the regimes of integration and segregation (black line).

Next, we quantified group-level segregation∼integration by studying the relation

between within-group and between-group coordination. If more within-group coordi-

nation leads to more between-group coordination, the groups may be said to become

integrated. If more within-group coordination leads to less between-group coordi-

nation, the groups may be said to become segregated. In Figure 2.4B, for the zero

intergroup difference (δf = 0 Hz, blue dots), a large value of within-group phase-

locking is paired with a large value of between-group phase-locking, indicating that
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the initial groups have merged. The same is true, though to a lesser extent, for

δf = 0.3 Hz. For δf = 0.6 Hz, however, a larger value of within-group phase-

locking is associated with a smaller value of between-group phase-locking, suggesting

that stronger coordination within the group prevents coordination with members of

the other group, or conversely, switching to another group reduces the coordination

with one’s original group. Quantitatively, for small diversity (δf = 0, 0.3 Hz), initial

groups integrated into one supergroup, as seen from the positive slope of regression

lines (Figure 2.4B, blue, red; β0Hz
1 = 0.88, t(84) = 20.0, p < 0.001; β0.3Hz

1 = 0.31,

t(84) = 3.94, p < 0.005). For larger diversity (δf = 0.6 Hz), the groups became

more segregated (negative slope; Figure 2.4B, yellow; β0.6Hz
1 = −0.14, t(85) = −2.83,

p < 0.01).

To estimate the critical diversity that marks the boundary between integration

and segregation, we regressed the degree of integration βδf1 against the intergroup

difference δf . We found a significant negative linear relation between those variables

(linear regression, α0 = 0.86, t(1) = 20.5, p < 0.05; α1 = −1.70, t(1) = −15.7,

p < 0.05). By finding when integration vanishes (βδf1 = 0), we identified a critical

frequency difference (δf ∗) of 0.5 Hz as a boundary between the two different macro-

organizations, i.e. a critical value that distinguishes segregation and integration.

2.2.4 Segregation and transitions of spatial order

We now return to real time dynamics to unpack the meaning of macro-level “segrega-

tion” in the foregoing statistical conclusion. In an example shown in Figure 2.5, the

ensemble was initially divided into two frequency groups (early on in Figure 2.5A;

faster group of agents 1 to 4, slower group of agents 5 to 8), thanks to the large

difference between their metronome frequency (δf = 0.6 Hz). Soon the ensemble de-

veloped into multiple local structures which were coordinated within and segregated

between each other (three pairs 3-2, 5-7, 6-8, and two individuals 1, 4; this spatial
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order can be easily seen in D, first two graphs, 10-25s). The large initial diversity

allowed the coexistence of multiple segregated groups and enabled the ensemble to

form a sustained spatial order by providing sufficient frequency isolation between local

structures (in contrast to the low diversity scenario where spatial patterns go through

constant reorganization, e.g. Figure 2.1, Fig S8). However, a segregated spatial order

does not have to be static. To the contrary, there was a sudden transition from one

segregated spatial order (A1 and 2nd graph in D) to another, also segregated, spatial

order (A2 and 3rd graph in D, a period marked with multiple partner exchanges),

then back to the original (A3, and 4th graph in D). This kind of micro-level exchange

of members across frequency groups has been observed in 77% of the trials in segre-

gated condition (δf = 0.6 Hz). It suggests that segregation is a macro property of

ensembles, and sustaining despite the coexistence of dynamical exchanges at micro

level.
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Figure 2.5: Frequency diversity contributes to spatial organization and reorganization.
(A) Instantaneous frequencies of an ensemble of eight interacting agents (smoothed by
averaging four consecutive taps). Agents 1 to 4 (warm colors) were paced with the same
metronome frequency 1.8 Hz, and similarly agents 5 to 8 (cold colors) were paced at 1.2
Hz, (i.e. δf = 0.6 Hz), which helped create two initial frequency groups. Soon after the
beginning of the interaction (∼12s, corresponding to the first graph in D), initial groups
divided into five local structures: three pairs (3-2, 5-7, 6-8) and two individuals (agent 1
largely independent, agent 4 oscillating between agent 1 and pair 3-2). The frequency pairing
held up to the time of (A1), then a sudden reorganization occurred from (A1) to (A2) – an
exchange of partners (3-2 broke up and recoupled into 4-3, 2-5; 7 left alone; corresponding
to the 3rd graph in D). The new pairing lasted a few seconds then returned to a similar
organization to (A1) at the time of (A3). Phase relations of the pairs involved in the
reorganization (A1-3) are illustrated in (B) as time series and in (C) as distributions of four
dyadic relative phases. The new organization at A2 lasted exactly the time for pair 3-2 (blue)
to break up an antiphase relation (27s) then return to it (33s) after phase wrapping for one
cycle. This transition in phase relations corresponds closely to the transitions of frequency
grouping. To visualize the spatial consequences of such phase/frequency regrouping, graphs
in (D) were used as representations of the coordinative structure. Each node represents a
participant at the actual location of the LED representing that participant (up to rotation).
Each edge represents the existence of strong phase coordination between two participants
at the time (aligned with x-axis in B). The spatial reorganization is apparent from the 2nd
and 3rd graph aligned to (A1) and (A2) respectively. Interestingly, the 3rd graph, albeit
distinct from the rest, is in fact isomorphic to the other graphs.
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2.3 DISUCSSION

2.3.1 Integration and segregation in a diverse group

Rhythmic coordination is ubiquitous in natural systems from the cells of the heart

to the neurons of the brain, from fireflies to people [18, 19, 28, 69, 71, 75, 80–82]. The

convergence of multiple interacting elements to global synchronization has been the

focus of experimental and theoretical studies [12, 71–74, 83, 84]. Behavioral synchro-

nization is known to facilitate social communication and the development of social

affection or bonding [85–89], and is important to understanding social coordination

dynamics [90, 91]. Nevertheless, within a community, people coordinate in multiple

social groups at various spatiotemporal scales – a complex organization that is far

from uniform synchronization [92–94]. In fact, the components of living systems often

compartmentalize into distinct communities or modules, highlighted by dense inter-

actions within communities and loose interactions between communities [95,96]. This

form of organization, embracing both integration and segregation among its elements,

can lead to greater persistence and robustness of the system [97–100], and influence

structural and functional complexity depending on the scale of integration [101–103].

Investigation of the conditions leading to the formation, change, and dissolution of

segregated structures is a necessary step to understanding and controlling complex

systems.

We demonstrated experimentally how coexisting groups integrated and segregated

in an ensemble of eight interacting people. Each half of the ensemble was predisposed

to move at a distinct frequency prior to social interaction, thereby creating two initial

frequency groups with a controllable parameter of diversity between them (δf). Peo-

ple engaged in more phase coordination with those who were predisposed to move at

the same frequency than with those who performed at a different frequency (Figure

2.4A; Fig S11 left). This is a form of “homophily” – people prefer interacting with
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those who are similar to themselves than with those who are different [104] – known

to contribute to segregation in diverse communities [105–108]. Indeed, the integrating

force of sameness is complemented by the segregating force of difference [37].

To what extent do quantitative changes in intergroup diversity induce a qualitative

change in intergroup relationships? We have shown that low-to-moderate diversity

led to integration of the groups (δf = 0, 0.3 Hz; Figure 2.1B): more coordination

within-group was associated with more coordination between-group. High intergroup

diversity led to segregation (δf = 0.6 Hz; Figure 2.1B): more coordination within-

group was associated with less coordination between-group. Parametrically varying

diversity made it possible to estimate the critical value of diversity (δf ∗): exceeding

this critical value led to macro-level segregation; remaining below the critical value

led to macro-level integration. Identifying the critical values of a dynamical system

empirically proves to be a valuable step in many situations, not only to provide essen-

tial information on the organizing principles and potential behaviors of the system,

but also to serve as key phenomena to be reproduced in theoretical models [109,110].

A complex system consists of interactions at multiple spatial scales, where activ-

ities at one scale are connected with those of another scale [4, 111]. How the macro

environment constrains micro activities was illuminated by comparing dyadic inter-

actions embedded in a group with expected behavior of dyads in isolation. If dyads

(micro) were not influenced by the larger environmental context (macro), the same

amount of coordination would be observed within groups at all three levels of in-

tergroup diversity. The data say otherwise: phase locking within a group was in

fact weakened by intergroup diversity (Figure 2.4A, left). This shows that when a

system has multiple components, dyadic interactions may not be fully understood

without taking into account the larger environment or context they are embedded

in [8, 112,113].
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2.3.2 The patterns of coordination

To further understand the micro dynamics of social interaction, we identified the

specific phase patterns people adopted. Overall, we found that inphase was visited

significantly more often than other phase relation, yet its prominence diminished with

increasing diversity (Figure 2.2). That is, diversity induced a dispersion of phase pat-

terns. Absolute synchronization between components’ behavior is not always desir-

able: excessive synchrony may induce pathological collective dynamics [114] or impede

complex functions [103, 115]. Diversity may come to the rescue. Besides inphase, a

weaker preference of antiphase over various other phase relations also appeared (Fig-

ure 2.2; antiphase stood out more in episodes of strong interactions, see Fig C in S1

File of [35]). The present results resonate with existing studies of human rhythmic

coordination [27, 28]. When coupling was sufficiently strong, the tendency for two

oscillatory components to coordinate inphase or antiphase was found across scales,

particularly when the components have similar frequency predispositions [116]. When

coupling was sufficiently weak, however, the antiphase pattern was more susceptible

to natural frequency differences (see e.g. [13,64,76]). Both diversity in frequency pre-

dispositions [13] and multiagent environment [25,67,117–119] help engender a variety

of phase relations that are neither inphase nor antiphase. The agreement between

the statistical properties of the interactive behaviors in an ensemble of eight persons

and the dynamic properties of dyadic coordination suggests that dyads remain the

most stable unit of spontaneous coordination. Yet how can group coordination be

achieved with primarily dyadic interactions? This led us to explore the dynamics of

phase relations.

Phase relations do not have to be static, as social coordination often evolves on

multiple time scales [92, 93, 120]. Over the course of interaction, we found that most

phase relations only lasted a short period of time (4-5s, Fig B in S1 File of [35]).

Two partners dwell in a phase relation for a few seconds before a “breakup” or “es-
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cape” from that relation, and then re-engage the next time they come across a favor-

able phase relation (e.g. Figure 2.1). The recurrent relation embodied by a series of

dwells and escapes is characteristic of metastable coordination dynamics [33,116,121].

Theoretically and empirically, metastability occurs in weakly coupled dynamical sys-

tems when there is sufficient difference in the components’ frequency predispositions.

The combination of symmetry breaking and weak coupling eliminates perfectly sta-

ble phase relations which are replaced by intermittent or recurrent phasing. In the

present study, quantitative analysis confirms that metastability prevails in all condi-

tions of interaction (Fig SJ in S1 File of [35]). Notice that, the sequence of dwells

and escapes of phase relations also manifests as oscillations in movement frequency

(e.g. Fig G in S1 File of [35]). In contrast with stable coordination in which com-

ponents eventually converge to the same frequency, metastability allows components

to visit a range of frequencies while still maintaining “social bonds” via intermittent

dwells. When multiple metastable relations coexist in the same group, it becomes

possible for a person’s transient escape from an existing relation to be at the same

time a dwell in a new relation. This chimeric feature (c.f. [77]) allows members of a

community to participate in multiple segregated substructures (e.g. a reading club,

and a hiking team) while maintaining both the separability of those substructures

and communication between them. Such continuous change of membership helps

large communities to persist [122] and increase global level of cooperation [123]. Spa-

tiotemporal metastability in multiple-component systems suits both the intuition of

daily social interaction, as well as the dynamic patterns observed in large scale social

networks [92].

Phase-locking constitutes a rather strong form of coordination. Such coordination

comes at a cost in both time and energy if the partners possess different frequency

predispositions: the chasm of frequency difference, jointly or unilaterally, must some-

how be crossed. In the present experiment, not all forms of coordination required such
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costly crossovers. As diversity increased, people from different groups were found to

adopt particular frequency relations (or ratios) of higher order (e.g. near 2:3, Fig

3B, yellow) as opposed to converging to a single frequency (1:1). Frequency rela-

tions appear in the more familiar context of music as polyrhythms. Theoretical and

experimental studies have shown the viability of different frequency ratios: higher

order ratios (e.g. 2:5, 3:5) are more difficult to maintain (less stable) than lower order

ratios (e.g. 1:3, 2:3) in accordance with so-called Arnold tongue and Farey tree prin-

ciples [50,79,124,125]. Such frequency relations enable segregated groups to maintain

communication between each other, without sacrificing within-group cohesion, thus

allowing complex coordinative structures to form. Such cross-frequency communi-

cation may serve to integrate local activities over long distance and time scales in

complex systems, including the brain [4, 126,127].

2.4 CONCLUSIONS

Our goal was to elucidate the coordination dynamics of ensembles of eight people,

where the ensemble is small enough for systematic manipulation in the laboratory,

but not too small as to prevent the unfolding of complex social dynamics (i.e., simple,

but no simpler). At the macro level, we studied the integration and segregation of

groups and how it affects, at the micro level, dyadic interactions embedded within.

A novel finding was that the domains of integration and segregation between groups

are demarcated by a critical level of intergroup diversity. Diversity across groups also

affected the strength and forms of dyadic coordination within groups. In particular,

a metastable form of phase coordination was revealed in which phase relations were

intermittent rather than stable, thereby allowing people to switch flexibly between

partners as a means of maintaining both diversity and unity. When groups were

segregated and phase coordination became difficult, social coordination also took the

form of cross-frequency coupling. The present work provides a multiscale portrait
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of the coordination dynamics among multiple agents, and thereby offers quantitative

details and reality checks for modelling social dynamics. The analytical methods used

here can be extended to study segregation and integration in larger systems, where

an abundance of scales of interaction is likely to further unveil the complexity and

stability of large scale networks or coordinative structures.

2.5 MATERIALS AND METHODS

2.5.1 Participants

120 participants (76 female, age 24± 8 yrs.) participated in the experiment, making

up 15 independent ensembles of eight. All participants were right-handed except 4,

who were all able to complete the tasks without difficulty. The protocol was approved

by Florida Atlantic University Institutional Review Board and in agreement with the

Declaration of Helsinki. Informed consent was obtained from all participants prior to

the experiment.

2.5.2 Experimental setup

For each ensemble of eight, participants were randomly seated in booths around an

octagonal table. They did not have direct visual contact with each other. Each par-

ticipant was equipped with a touchpad (green rectangle in Figure 2.6) and an array

of eight light-emitting photodiodes (LEDs; yellow in Figure 2.6). Each tap of a par-

ticipant was broadcast to all participants (including self) in real time as a single flash

of an assigned LED (hand contacts touchpad, light on; hand leaves touchpad, light

off). The tap flash signals were converted and transmitted through a signal processing

pipeline consisting of a PC flanked by two microcontrollers (MCs; one for input, one

for output; communicates with the PC through serial port at 57600 bps). The input

MC samples movement data from the touchpads at 250 Hz (1=touch, 0=leave) and

sends data to the PC. Dedicated software (written in C++) runs on the PC, which
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receives tapping data from the input MC, and controls the spatial configuration of

LEDs and the network connectivity among participants. The spatial configuration

map assigns each LED on each array to represent a particular participant. The spa-

tial configuration map was randomized across different ensembles of eight, but fixed

for each ensemble throughout an experimental session. In this particular experiment,

the network connectivity map determines whether a particular participant can see

(1) only self-produced flashes; (2) self-produced flashes and a metronome (computer

generated flashes, see Procedures); or (3) self- and other-produced flashes. After the

spatial and network mapping are completed, the PC sends 64 bit data to 8 LED ar-

rays via the output MC, synchronized to each sample from the input MC (tap-to-flash

latency 2.5-4.5 ms, less than 1% of the shortest period of metronomes).
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Figure 2.6: Experimental Setup. Eight participants are seated around an octagonal table;
they do not have direct vision of each other. Rather, they are exposed to each other’s tapping
behavior through touchpads (record tapping; green) and arrays of LEDs (display self and
others’ taps as flashes; yellow). On each LED array, there is a one-to-one correspondence
between LEDs and participants. (black panel) The mapping was rotated for each array
so that a participant always saw self-behavior at the lowest LED (white box). All LEDs
labeled red represent people who were paced by metronomes of the same frequency as for
self. LEDs labelled blue represent people paced to metronomes at another frequency (actual
LEDs were all in the same color). By such metronome assignment, participants of the same
ensemble were split into two initial frequency groups. By manipulating the metronome
difference between the two groups, we created different levels of diversity, thereby inducing
integration∼segregation at different spatial scales.

2.5.3 Procedures

Each trial of the experiment lasted 68s and consisted of three stages. In Stage 1

(5s), participants tapped rhythmically at their own comfortable frequency, only see-

ing self-produced flashes (Figure 2.6, black inset “self”). In Stage 2 (10s), all the

non-self LEDs started to flash in synchrony at a preassigned frequency, basically

a metronome (initial phase randomized between trials and subjects). Participants

were instructed to match their own tapping frequency to the metronome frequency,
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and remain tapping at that frequency throughout the rest of the trial even after the

metronome disappeared. Following a 3s transient, subjects were exposed to each

other’s rhythmic behavior (Stage 3, 50s), each LED flashed corresponding to a par-

ticular participant’s taps.

We manipulated intergroup behavior by assigning metronomes of different fre-

quencies to different participants. In order to emphasize frequency diversity, spatial

symmetry was imposed as follows: from each participant’s perspective, persons pre-

sented at the north, west, and east of the center of the LED array were always paced

with the same metronome as self (south to center), whilst the others were paced with

another metronome. Thus, metronome assignment was designed to split eight people

into two initial frequency groups (red group and blue group in Figure 2.6, black inset).

Frequency diversity thus appears across groups not within groups. Specifically, for

each trial, group metronomes were assigned following one of the three conditions: (1)

1.5 Hz vs. 1.5 Hz, (2) 1.65 Hz vs. 1.35 Hz, and (3) 1.8 Hz vs. 1.2 Hz. With the same

mean frequency (1.5Hz), the three conditions correspond to three levels of between-

group metronome difference (δf) which we term a diversity parameter: δf = 0 Hz,

δf = 0.3 Hz, δf = 0.6 Hz.

Each ensemble of eight participants completed 24 trials in random order, including

6 trials in which participants were only connected to people within their own group

(results not reported in this paper) and 18 trials in which every participant was

connected to every other participant. In the present paper, we consider the effect

of different levels of between-group difference on fully connected ensembles of eight

people.

2.5.4 Statistical analyses

Distributions of relative phase (φ) and frequency ratio (FR) were compared to chance

level using permutation tests. Ten thousand randomly permuted time series were used
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for constructing the confidence intervals of chance level distributions. The significance

level was chosen to be p̂ = 0.05 (with Bonferroni correction). Computational details

are shown in Section A.1 and A.4 in Appendix A.

To compare the level of phase-locking in different conditions, two-way ANOVA

was used (2 × 3 for relation × δf) with Type III Sums of Squares; Tukey Honest

Significant Difference tests were used for post hoc comparisons (see Section A.2 for

details).

To measure the level of integration between groups, we regressed the level of

within-group phase locking against between group phase-locking separately for 3 di-

versity levels. The slopes of the regression lines (βδf1 ) reflect the level of integration

(positive slope = integration, negative slope = segregation). The critical level of

diversity (δf ∗), corresponding to zero-slope (β1 = 0), was found through linear inter-

polation (see Section A.3 for details).
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CHAPTER 3

A CROSS-SCALE MODEL OF COORDINATION DYNAMICS

3.1 INTRODUCTION

Coordination is central to living systems and their complexity, where the whole can

be more than and different from the sum of its parts. Rhythmic coordination [44] is

of particular interest for understanding the formation and change of spatiotemporal

patterns in living systems, including e.g. slime mold [128], fireflies [129], social groups

[71], and the brain [28, 33]. Theoretical formulations of coordination problems are

often in terms of coupled oscillators, whose behavior is constrained by their phase

relations with each other [12, 18, 38]. Existing studies of phase coordination often

focus on systems of either very few oscillators (small-scale, mostly N = 2) [28,39,118],

or very many oscillators (large-scale, N → ∞) [130–132]. The in-between is barely

covered. In the present work, we take an experiment-theory combined approach

to show how coordination in-between helps us connect small-scale and large-scale

theories of coordination.

But first, how are they different? Small-scale models were usually developed

to capture empirically observed coordination patterns, as in animal gaits [66], bi-

manual movement coordination [27, 29], neuronal coordination [133], interpersonal

coordination [53, 134], human-animal coordination [62] and human-machine coordi-

nation [59, 60]. They describe multiple stable coordination patterns (multistability)

and the transitions between them (order-to-order transitions), e.g. from a trot to a

gallop for a horse [135]. In humans, dyadic coordination patterns like inphase and

antiphase (synchronization, syncopation) were found across neural, sensorimotor, and
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social levels (see [28,33] for reviews), well captured by the Haken-Kelso-Bunz (HKB;

for two identical components) [27] and extended Haken-Kelso-Bunz (HKB) model

(extending the HKB to capture how phase relations are affected by the difference be-

tween two components; the extended HKB includes the HKB as a special case) [13,64].

However, the extended HKB, while deeply grounded in empirical observations, was

restricted to coordination problems of N = 2. In contrast, large-scale models are

more concerned about statistical features like the overall level of synchrony, disorder-

to-order transitions, but not so much about micro-level patterns. As a representative,

the classical Kuramoto model [12] is applicable to describing a wide range of large-

scale coordination among, e.g., people [73,132], fish [136], and neural processes [131],

often studied analytically for its incoherence-to-coherence transition (for N → ∞;

see [72, 137] for reviews).

Although the extended HKB and the classical Kuramoto model emerged sepa-

rately, they connect to each other by an interesting difference: the Kuramoto model

with N = 2 is almost the extended HKB model except that the former lacks the term

responsible for antiphase coordination in the latter (more accurately, the bistability

of inphase and antiphase). Bistability of inphase and antiphase coordination, with

associated order-to-order transitions and hysteresis, happens to be a key observation

in small-scale human experiments [29,32]. This begs the question of whether there is a

fundamental difference between large-scale and small-scale coordination phenomena.

Does the existence of antiphase, multistability, and order-to-order transitions depend

on scale N? With these questions in mind, we recently conducted a human exper-

iment [35] at an intermediate scale (N = 8), such that the system is large enough

for studying its macro-level properties, yet small enough for examining micro-level

patterns. In the present work, we developed a theoretical model that successfully

captures key observations in this experiment at multiple levels of description, and at

the same time connects small-scale and large-scale coordination.
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3.2 RESULTS

3.2.1 Human coordination at intermediate scales

touchpad LED array (top view)

LED array
(front view)

Group A Group B
Figure 3.1: Experimental setup for multiagent coordination. In the Human Firefly ex-
periment [35], eight subjects interacted simultaneously with each other via a set of touch
pads and LED arrays. In each trial, each subject was paced with a metronome prior to
interaction. The metronome assignment split the ensemble of eight into two frequency
groups of four (group A and B, colored red and blue respectively). The frequency difference
δf between group A and B were systematically manipulated to induce different grouping
behavior. See text for details.

Before getting into the model, we briefly review the mid-scale experiment and key

results [35]. In the experiment (dubbed the “Human Firefly” experiment), ensem-

bles of eight people (N = 8, total 120 subjects) spontaneously coordinated rhythmic

movements in an all-to-all network (via 8 touchpads, and 8 ring-shaped arrays of 8
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LEDs as in Figure 3.1; see Materials and Methods for details). To induce different

grouping behavior, subjects were paced with different metronomes prior to interaction

such that each ensemble was split into two frequency groups of equal size with inter-

group difference δf = 0, 0.3, or 0.6 Hz (referred to as levels of “diversity”), and were

asked to maintain that frequency during interaction after the metronome was turned

off. Subjects’ actual frequencies from three example trials (Figure 3.2A-C) show in-

tuitively the consequences of frequency manipulations: from (A) to (C) a supergroup

of eight gradually split into two frequency groups of four as diversity increased from

δf = 0 Hz to 0.6 Hz.

39



Figure 3.2: Examples of frequency dynamics and aggregated relative phase distributions
for three diversity conditions. (A-C) shows instantaneous frequency (average over four
cycles) from three trials with diversity δf = 0, 0.3, 0.6 Hz respectively. Viewed from bottom
to top, in (C), two frequency groups of four are apparent and isolated due to high intergroup
difference (low-frequency group, warm colors, paced with metronome fA = 1.2 Hz; high-
frequency group, cold colors, paced with metronome fB = 1.8 Hz). As the two groups get
closer (B), more cross-talk occurred between them (note contacting trajectories especially
after 30s). Finally when the intergroup difference is gone (A), one supergroup of eight
formed. (D-F) show relative phase φ distributions aggregated from all trials for δf =
0, 0.3, 0.6 Hz respectively (histograms computed in [0, π), plotted in [−2π, 2π] by symmetry
and periodicity). When diversity is low (D), the distribution peaks near inphase (φ = 0) and
antiphase (φ = π), separated by a trough near π/2, with antiphase weaker than inphase.
The two peaks are diminished as δf increases (E,F), but the weaker one at antiphase
becomes flat first (F).

Key results involve multiple levels of description, in terms of intergroup, intragroup

and interpersonal relations. The level of intergroup integration is defined as the

relation between intragroup and intergroup coordination (β1, slope of regression lines

in Figure 3.3A; see Materials and Methods). Two frequency groups are integrated

when diversity is low or moderate (δf = 0, 0.3Hz, blue and red lines, slope β1 > 0) and

segregated when diversity is high (δf = 0.6 Hz, yellow line, slope β1 < 0). A critical
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level of diversity demarcating the regime of integration and segregation was estimated

to be δf ∗ = 0.5 Hz. At the interpersonal level, inphase and antiphase were preferred

phase relations (inphase much stronger than antiphase; distributions in Figure 3.2D-

F), especially when the diversity was very low (Figure 3.2D, peaks around φ = 0, π,

in radians throughout this paper), but both were weakened by increasing diversity

(Figure 3.2EF; in episodes of strong coordination, antiphase is greatly amplified, and

much more susceptible to diversity than inphase, see [35]). Notice that subjects did

not lock into these phase relations but rather engaged and disengaged intermittently

(two persons dwell at and escape from preferred phase relations recurrently, a sign of

metastability; see Figure 3.5A red trajectory for example), reflected also as “kissing”

and “splitting” of frequency trajectories (e.g. in Figure 3.2B).
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Figure 3.3: Intergroup relations and average inter/intragroup coordination. (A) shows how
intragroup coordination relates to intergroup coordination for different levels of diversity
(δf , color-coded) in the “Human Firefly” experiment [35]. Each dot’s x- and y-coordinate
reflect the level of intragroup and intergroup coordination respectively (measured by phase-
locking value). Lines of corresponding colors are regression lines fitted for each diversity
condition (slope β1 indicates the level of integration). With low and moderate diversity
(blue and red), two frequency groups are integrated (positive slopes); and with high diver-
sity (yellow), two frequency groups are segregated (negative slope). Black line (zero slope)
indicates the empirically estimated critical diversity δf∗, demarcating the regimes of inte-
gration and segregation. The exact same analyses were applied to the simulated data (200
trials per diversity condition) and the results are shown in (C), which highly resemble their
counterparts in (A). (B) shows a break-down of the average level of dyadic coordination as
a function of diversity (color) and whether the dyadic relation was intragroup (left) or inter-
group (right). Intragroup coordination was reduced by the presence of intergroup diversity
(δf 6= 0; left red, yellow bars shorter than left blue bar); intergroup coordination dropped
rapidly with increasing δf (right three bars; error bars reflect standard errors). Results of
the same analyses on simulated data are shown in (D), which again highly resembles the
human data in (B).
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In the following sections, we present a model that captures these key experimental

observations at both macro (intergroup) and micro (interpersonal) levels of descrip-

tions.

3.2.2 A minimal experiment-based model of multiagent coordination

Our model of coordination is based on a family of N oscillators, each represented by

a single phase angle ϕi. We will show that a pair-wise phase coupling [12, 27, 66] of

the form

ϕ̇i = ωi −
N∑
j=1

aij sin(ϕi − ϕj)−
N∑
j=1

bij sin 2(ϕi − ϕj) (3.1)

suffices to model the key features of the experimental data identified above. The left

side of this equation is the time derivative of ϕi, while the constant ωi > 0 on the

right is the natural (i.e., uncoupled) frequency of the ith oscillator. The coefficients

aij > 0 and bij > 0 are parameters that govern the strength of coupling.

The equations (3.1) include a number of well-studied models as special cases. For

instance, setting φ := ϕ1 − ϕ2, δω := ω1 − ω2, ã := a12 + a21, and 2b̃ := b12 + b21 for

N = 2, the difference of the two resulting equations (3.1) yields the relative phase

equation

φ̇ = δω − ã sinφ− 2b̃ sin 2φ (3.2)

of the extended HKB model [13]. The HKB model was originally designed to describe

the dynamics of human bimanual coordination, and has since been shown to apply to

a broad variety of dyadic coordination phenomena in living systems (see [28,138] for

details). Equations (3.1) generalize the extended HKB model to N oscillators in a

straightforward way. It is quite remarkable that such a straightforward generalization

can reproduce key features of the collective rhythmic coordination among groups

of human subjects, who moreover couple to one another experimentally through a

rudimentary, visual stimulus.
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Another well-studied special case of equations (3.1) is the Kuramoto model [12],

which has bij = 0 (and typically aij = a, independent of i and j). We will see

below, however, that the Kuramoto model cannot exhibit at least one feature of the

experimental data. Namely, the data show a secondary peak in the pairwise relative

phase of experimental subjects at antiphase, along with a major peak at inphase (see

Figure 3.2D-F above). Simulations using the Kuramoto model do not reproduce this

effect, while simulations of equations (3.1) model do (compare Figure 3.4 D-F and

G-I below). We give additional analytical support for this point by studying relevant

fixed points of both models in the Appendix B (Section B.7).

3.2.3 Weak coupling captures human behavior

Given the spatially symmetric setup of the “Human Firefly” experiment (all-to-all

network, visual presentation at equal distance to fixation point), it is reasonable to

further simplify equations (3.1) by letting aij = a and bij = b (a, b > 0),

ϕ̇i = ωi − a
N∑
j=1

sinφij − b
N∑
j=1

sin 2φij (3.3)

where φij = ϕi−ϕj is the relative phase between oscillators i and j (henceforth we use

the notation φij instead of the subtraction, since relative phase is the crucial variable

for coordination [27]).

At the level of intergroup relations, model behavior (Figure 3.3C; under weak cou-

pling a = b = 0.105, which was chosen after a comprehensive study of the parameter

space, see Section B.1 in Appendix B on parameter choices) successfully captures

human behavior (Figure 3.3A) at all levels of diversity. Similar to the human ex-

periment, low diversity (δf = 0 Hz) results in a high level of intergroup integration

in the model (blue line in Figure 3.3C slope close to 1; β1 = 0.972, t(199) = 66.6,

p < 0.001); high diversity (δf = 0.6 Hz) comes with intergroup segregation (yellow

line slope negative; β1 = −0.113, t(199) = −3.56, p < 0.001); and in between, mod-

erate diversity (δf = 0.3 Hz) is associated with partial integration (red line positive
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slope far less than 1; β1 = 0.318, t(199) = 4.23, p < 0.001). Here we did not estimate

the critical diversity δf ∗ the same way as for the human data (by linear interpola-

tion), since we found theoretically that the level of integration depends nonlinearly

on diversity δf (see Figure B.1), and as a result the theoretical δf ∗ is 0.4 Hz (see

Figure B.1D). This prediction can be tested in future experiments by making finer

divisions between δf = 0.3 and 0.6 Hz.

In the human experiment, not only did we uncover the effect of diversity on in-

tergroup relations, but also, non-trivially, on intragroup coordination (outside affects

within, a sign of complexity). Statistically, this is shown in Figure 3.3B (three bars

on the left): with the presence of intergroup difference (δf > 0), intragroup coor-

dination was reduced (red, yellow bars significantly shorter than blue bar). This

is well captured by the model as shown in Figure 3.3D (2-way ANOVA interaction

effect, F (2, 19194) = 3416, p < 0.001; the simulated data also capture the rapid de-

cline of intergroup coordination with increasing δf in human data, shown in Figure

3.3BD, right). To see what this means dynamically, three simulated trials are shown

in Figure 3.4A-C as examples (same initial conditions and intragroup frequency dis-

persion). The phase-locked state within groups (when δf = 0 Hz; Figure 3.4A) is

lost and replaced by metastable coordination (intermittent convergence, marked by

black triangles in Figure 3.4BC) as soon as two groups begin to differentiate from

each other (δf = 0.3, 0.6 Hz). In fact, the statistical result (Figure 3.3B, left) reflects

how two groups collaboratively increased each other’s intragroup coordination (see

Section B.3 for baseline dynamics when intergroup coupling is removed, where intra-

group coordination is always metastable, and Section B.4 in Appendix B for statistics

when intragroup variability is removed). Comparing Figure 3.4B with C, we see the

time scale of metastable convergence is also altered by intergroup difference δf (longer

inter-convergence interval for C) - intergroup difference changes not only the overall

level of coordination within groups, but also the patterns of coordination.
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Figure 3.4: Examples of frequency dynamics and aggregated relative phase distributions
for simulated data. (A-C) show frequency dynamics of three simulated trials (a = b = 0.105)
with the same initial phases and intragroup frequency dispersion but different intergroup
difference i.e. δf = 0, 0.3, 0.6 Hz respectively. When intergroup differences are intro-
duced (BC), not only is intergroup interaction altered but intragroup coordination also
loses stability and becomes metastable (within-group trajectories converge at black trian-
gles and diverge afterwards). The time scale of metastable coordination also changes with
δf , i.e. the inter-convergence interval was shorter for (B) than (C). (D-F) show relative
phase distributions, aggregated over 200 trials (a = b = 0.105) for each diversity condition
(δf = 0, 0.3, 0.6 respectively). At low diversity (D), there is a strong inphase peak and
a weak antiphase peak, separated by a trough near π/2. Both peaks are diminished by
increasing diversity (EF). These features are qualitatively the same as the human experi-
ment. (G-I) show the same distributions as (D-F) but for a = 0.154 and b = 0 (i.e. the
classical Kuramoto model). There is a single peak in each distribution at inphase φ = 0,
and a trough at antiphase φ = π.

At interpersonal level, human subjects tended to coordinate with each other

around inphase and antiphase, especially when the diversity is low (δf = 0 Hz; Figure

3.2D, peaks around φ = 0, π separated by a trough near φ = π/2); and the prefer-

ence for inphase and antiphase both diminishes as diversity increases (δf = 0.3, 0.6,

Figure 3.2EF). These aspects are well reproduced in simulations of the equation (3.3)

(Figure 3.4D-F). Note that these model-based distributions are overall less dispersed

46



than the more variable human-produced distributions (Figure 3.2D-F), likely due to

the deterministic nature of the model (i.e. no stochastic term).

3.2.4 The necessity of second-order coupling

Equation (3.3) becomes the classical Kuramoto model [12] when b = 0. We follow the

same analyses as in the previous section but now for a = 0.154 and b = 0 (see Section

B.6 in Appendix B on parameter choices). The relationship between intragroup and

intergroup coordination (Figure B.7A; β1(0Hz) = 0.974, t(199) = 53.2, p < 0.001;

β1(0.3Hz) = 0.292, t(199) = 4.52, p < 0.001; β1(0.6Hz) = −0.011, t(199) = −0.41,

p > 0.05) resembles the case of b 6= 0 (a = b = 0.105, Figure 3.3C). A difference

remains that for b = 0, β1(0.6Hz) is not significantly less than zero (p = 0.68) when

b = 0. The average level of intragroup and intergroup coordination also varies with

diversity in the same way as the case of b 6= 0 (Figure B.7B for b = 0, interaction

effect F (2, 19194) = 3737, p < 0.001, compared to Figure 3.3D for b 6= 0). In short,

group-level statistical features are mostly preserved without second order coupling

(i.e. b = 0).

However, this is no longer the case when it comes to interpersonal relations. The

distributions of dyadic relative phases are shown in Figure 3.4G-I. Without second

order coupling, the model does not show a preference for antiphase in any of the

three diversity conditions, thereby missing an important feature of human social co-

ordination. Analytically, we find that the coupling ratio κ = 2b/a determines whether

antiphase is preferred (for the simple case of identical oscillators, in Section B.7 in

Appendix B). A critical coupling ratio κc = 1 demarcates the regimes of monostability

(only all-inphase is stable for κ < 1) and multistability (any combination of inphase

and antiphase is stable for κ > 1). The critical ratio is identical to the critical cou-

pling of the extended HKB model [13], where the transition between monostability

(inphase) and multistability (inphase and antiphase) occurs (equation 3.2, parameters
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in the two equations map to each other by a = ã/2 and b = b̃). This shows further

how equation (3.3) is a natural N-dimensional generalization of the extended HKB

model, in terms of multistability and order-to-order transitions.

3.2.5 The effect of non-uniform coupling

So far, our model has captured very well experimental observations with the simple

assumption of uniform coupling. However, loosening this assumption is necessary

for understanding detailed dynamics. Here is an example from [35] (Figure 3.5A),

where coordination among three agents (1, 3, and 4, labels of locations on LED

arrays) is visualized as the dynamics of two relative phases (φ13 red, φ34 yellow).

Agents 3 and 4 coordinated inphase persistently (10-40s yellow trajectory flat at

φ34 ≈ 0), while agents 3 and 1 coordinated intermittently every time they passed by

inphase (red trajectory φ13 becames flat, i.e. dwells, near inphase around 10, 20 and

35s). Curiously, every dwell in φ13 (red) was accompanied by a little bump in φ34,

suggesting φ34 was periodically influenced by φ13. In the framework of our model, we

can approximate the dynamics of φ34 from equation (3.1) by assuming φ34 = 0 (thus

φ13 = φ14),

φ̇34 = f(φ34) + (a31 − a41) sinφ13 + (b31 − b41) sin 2φ13︸ ︷︷ ︸
=:K(φ13)

(3.4)

where f(φ34) is the influence of φ34 on itself, K(φ13) the influence of φ13 on φ34. From

K(φ13) we see that φ13 has no influence on φ34 if the coupling is completely uniform

(i.e. K(φ13) ≡ 0 if a31 = a41 and b31 = b41). To break the symmetry between agent 3

and 4, we “upgrade” equation (3.3) to the system

ϕ̇i = ωi − ai
N∑
j=1

sinφij − bi
N∑
j=1

sin 2φij (3.5)
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where each oscillator can have its own coupling style (oscillator specific coupling

strength ai and bi). In the present case, we are interested in what happens when

a3 6= a4 for i ∈ {1, 3, 4}. Two simulated trials are shown in Figure 3.5BC, using the

same initial conditions and natural frequencies estimated from the human data. The

bumps in φ34, accompanying dwells in φ13, are reproduced when a3 � a4 (Figure

3.5B) but not when a3 = a4 (Figure 3.5C; see Section B.8 in Appendix B for more

analyses). This example shows that to understand interesting dynamic patterns in

specific trials, non-uniform coupling strength is important.
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Figure 3.5: The effect of non-uniform coupling strength on coordination dynamics. (A)
shows the evolution of the relationship between three persons (agent 1, 3, 4, spatially
situated as in legend) in terms of two relative phases (φ13, φ34). φ34 (yellow) persisted at
inphase for a long time (10-37s trajectory flattened near φ = 0) before switching to antiphase
(40s). φ13 (red) dwelled at inphase intermittently (flattening of trajectory around 10, 20, and
35s). Three bumps appeared in φ34 during its long dwell at inphase (near 15, 25, 37s), which
followed the dwells in φ13, indicating a possible influence of φ13 on φ34. (B,C) show two
simulated trials with identical initial conditions and natural frequencies, estimated from the
human data. In (B), agent 3 is more “social” than agent 4 (a3 > a4). More precisely, agent
3 has a much stronger coupling (a3 = 1) than all others (a1 = a4 = b1 = b3 = b4 = 0.105,
as in previous sections). The recurring bumps in φ34 are nicely reproduced. In (C), agent
3 and 4 are equally “social” (a3 = a4 = 0.5525, keeping the same average in (B)). φ34 is
virtually flat throughout the trial.

3.2.6 Metastable coordination between more than two agents

In the preceding sections, we have shown how the model captures specific experimental

observations at various levels of description. In this section, we further probe the

model’s behavior for a better theoretical understanding of metastable coordination in

the multiagent scenario (i.e. spatiotemporal metastability which few work has studied
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in detail, e.g. [33]).

First, we show how metastable coordination between three oscillators is different

from that of two. Between two oscillators (as studied in [13, 64]), coordination can

be described as the dynamics of a single relative phase, which is confined to the

underlying state space S1, i.e. a circle. For sufficiently large difference between the

natural frequency of two oscillators (e.g. δω in equation 3.2), all fixed points of the

system (i.e. phase-locked solutions) are gone and a single periodic orbit emerges

covering S1, at which point the system is said to be metastable. But so long as the

system is metastable, manipulation of δω will not create any qualitative change in

the metastable dynamics – the relative phase orbit has a unique topology, identical

to that of S1. This is no longer the case when a third oscillator is added into the

system, as we will show next.

The coordination dynamics of three oscillators can be described by two phase

relations. If one relation is metastable while the other is not (i.e. phase-locked),

we may say the collective pattern is partially metastable. Since either one can be

metastable, there are at least two partially metastable patterns. More concretely,

consider a system of three oscillators (seen uncoupled in Figure 3.6 A1-3), two of

which have fixed natural frequencies of 0 and 1 Hz (red, blue lines in Figure 3.6

A1 show their uncoupled frequency dynamics, i.e. time derivatives of their absolute

phases ϕ0 and ϕ1). The third one has a variable natural frequency λ Hz (absolute

phase ϕλ), where λ ∈ [0, 1] (e.g. black line in Figure 3.6 A1 with λ = 0.5). If they

are coupled (coupling strength a = b = 1 with respect to equation 3.3, which is just

small enough such that the three are never all phase-locked), two partially metastable

patterns are apparent – ϕλ is only phase-locked to either ϕ1 (e.g. when λ = 1, relative

phase φ1−λ ≡ 0; seen in Figure 3.6 B1 as black completely overlaps with the oscillator

at 1 Hz on top) or ϕ0 (e.g. when λ = 0, relative phase φλ−0 ≡ 0; seen in Figure 3.6

C1 as black completely overlaps with the oscillator at 0 Hz at the bottom). These
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two patterns can be represented as two different loops (periodic orbits of relative

phases (φ1−λ(t), φλ−0(t))> with t ∈ [0, T ) for an orbit of period T ) on a torus S1×S1

(Figure 3.6 BC2-3) – a meridian loop (B3) and a longitudinal loop (C3) respectively.

They are topologically distinct in the sense that you cannot continuously deform

one into another (i.e. not homotopy equivalent). We can classify these two types of

patterns by a pair of winding numbers (p, q) denoting how many times the loop wraps

around the longitude and meridian circle respectively, i.e. (0, 1) for (B3) and (1, 0)

for (C3). From this topological classification of metastable patterns, an interesting

problem arises: how the transition between topologically distinct patterns (from C3

to B3) occurs under a continuous change of λ (from 0 to 1), or what types of, if any,

metastable pattern exist in between. We address this question next by varying λ.
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Figure 3.6: Basic forms of triadic metastable coordination. (A1-3) shows the behavior
of three uncoupled oscillators (a = b = 0) with natural frequency 0, λ = 0.5, and 1 Hz and
initial phase ϕi = 0 for all i’s, as the dynamics of instantaneous frequency (red, black, blue
lines in A1; all are constant at their natural frequencies due to the lack of interaction) and
the corresponding periodic orbit of relative phases as a loop on a torus (A2-3; the space in A2
has periodic boundaries, i.e. {φ1−λ = 0} ∼ {φ1−λ = 2π} and {φλ−0 = 0} ∼ {φλ−0 = 2π};
A3 is simply a rolled-up version of A2 with the origin in front to better visualize the topology
and continuity, but the exact distance in A2 is not preserved). Here two relative phases
φ1−λ and φλ−0 increase linearly with time at the same rate because λ is in equal distance
with the other two oscillators, resulting in a loop of type (1, 1) on the torus (see text).
(B1-3) and (C1-3) show corresponding information regarding three coupled oscillators with
a = b = 1, λ = 1 (B1-3) and λ = 0 (C1-3). For λ = 1, the black oscillator (in B1)
is completely locked to the oscillator at 1 Hz while coordinating metastably with the red
oscillator (trajectories have minimal distance when two oscillators dwell at certain phase
relations), with corresponding relative phase orbit of type (0, 1) (B2-3); for λ = 0, the black
oscillator is locked to the oscillator at 0 Hz (C1), with corresponding relative phase orbit of
type (1, 0) (C2-3).

For most values of λ, the relative phase orbit still belongs to the two types above

(for λ ∈ [0.52, 1], type (0, 1), see Figure 3.6 B2-3 and 3.7 A2-3; for λ ∈ [0, 0.48], type
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(1, 0), see Figure 3.6 C2-3 and 3.7 E2-3) despite the deformation and a change in

period (seen as fewer cycles in Figure 3.7 A1 and E1 than in Figure 3.6 B1 and C1).

Near λ = 0.5 however, a purely metastable pattern appears, where ϕλ is not phase-

locked to either ϕ0 or ϕ1 (i.e. both relations ϕ1−λ and ϕλ−0 are metastable; Figure

3.7 C1-3 for λ = 0.5). The topology of the corresponding relative phase orbit is of

type (1, 1) (Figure 3.7 C2-3; one may notice the similarity to Figure 3.6 A2-3. The

difference is that only the orbit in Figure 3.7 C2-3 is structurally stable. See Appendix

B.9), which is not homotopic to the pattern of either type (0, 1) (A2-3) or (1, 0) (E2-3)

studied above, but rather the composition of both (correspondingly, the types follow

the relation (1, 1) = (0, 1) + (1, 0)). One would immediately ask inductively, whether

there is yet another pattern of type (1, 2) = (0, 1) + (1, 1) for some value of λ between

0.52 and 0.5. Such a pattern can indeed be found around λ = 0.5184 as shown in

Figure 3.7 B2-3, which can be easily seen as a composition of (A2-3) and (C2-3) (and

symmetrically, for λ = 0.4816 shown in Figure 3.7 D2-3, a composition of C2-3 and

E2-3; see Figure B.10 for more examples of composition). While a formal proof is

beyond the scope of the present text, it is reasonable to conjecture that for λ ∈ (0, 1),

there are infinitely many purely metastable patterns as structurally stable periodic

orbits in S1 × S1 with distinct pairs of winding numbers (p, q) ∈ Z+ ×Z+, belonging

to the fundamental group of S1 × S1, generated by partially metastable patterns of

type (0, 1) and (1, 0) (Figure 3.6 B2-3 and C2-3). This amounts to showing that the

Poincaré map associated with this three-oscillator system depends continuously on λ,

which connects the conjecture to known results on the rotation number of circle maps

(see [139]). In any case, we see multiple types of purely metastable patterns packed

within a narrow range of parameter values λ ∈ [0.48, 0.52], where the three oscillators

are nearly equidistant to each other in natural frequency (how narrow the range is

depends on the coupling strength – greater coupling makes the range narrower until

the system is no longer metastable; see Appendix B.9). This ability to reach various
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complex metastable patterns under small parameter change is in stark contrast with

metastable coordination between two oscillators – more is different [140].
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Figure 3.7: Extended forms of triadic metastable coordination. Here we extend the
examples given in Figure 3.6 B1-3 and C1-3 with additional values of λ (all other parameters
are the same). Within a small parameter range λ ∈ [0.48, 0.52], there are at least five distinct
types of relative phase orbits that are not homotopic to each other, i.e. (0, 1) for A2-3, (1, 2)
for B2-3, (1, 1) for C2-3, (2, 1) for D2-3, and (1, 0) for E2-3, with corresponding frequency
dynamics in A1-E1.
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So far we have based our classification on winding numbers, which only give a

rough description of patterns. On the other hand, frequency dynamics (Figure 3.7 A1-

E1) reflects not only the winding numbers but also additional information about the

temporal unfolding of each pattern. Winding numbers are reflected as the clustering of

the frequency curves and the relative size of holes between curves (since the integral of

frequency difference is exactly the change in relative phase). Frequency dynamics also

shows the order in which simple patterns (e.g. Figure 3.7 A1 and C1) are composed

into a more complex one (B1) (in Figure 3.7, one cycle in B1 is roughly adding a cycle

in A1 in front of a cycle from C1; from Figure B.10, one can see more clearly that

this order is not arbitrary) and the overall duration of a pattern (see the difference

between Figure 3.6 A1 and 3.7 C1). Thus, metastable patterns can be studied in more

details as the geometry of 2D graphs composed of frequency trajectories. This is very

convenient when we study higher-dimensional metastable coordination that cannot

be visualized on a torus (we devise a computational method that takes advantage of

this point in the next chapter). An example is shown below.

Figure 3.8: An example of eight-agent metastable coordination, with coupling a = b =
0.15, average natural frequency ω̄ = 1.5 Hz, and difference between adjacent oscillators
δωi+1,i = 0.075 Hz, shown as frequency trajectories. One period of the metastable pattern
is enlarged in the black box under the time axis. The winding numbers of relative phases
between adjacent oscillators is (1, 1, 1, 1, 1, 1, 1).
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Figure 3.8 shows a metastable pattern (repeated for five cycles) formed by eight

oscillators as a complex shape composed of frequency trajectories. Trajectories fan

out separately at the beginning of each cycle but return as two clusters at the end, and

in between form various organizations. The complexity of this pattern cannot be fully

described by the winding numbers alone, i.e. (1, 1, 1, 1, 1, 1, 1). In fact, the winding

numbers only provide a geometric constraint on the area of empty space between

curves. While a systematic geometric study of multiagent metastable patterns has

to be left to the future, this example gives a taste of how complex and, nevertheless,

ordered dynamic patterns can be generated without synchronization.

3.3 DISCUSSION

The present model is a natural generalization of the extended HKB (for N = 2) [13]

to higher dimensions (arbitrary N) and an extension of the classical Kuramoto model

(for large N) [12] to include second-order coupling, thereby reconciling small-scale and

large-scale theories of coordination. The model successfully captures key features of

multiagent coordination in mid-scale ensembles at multiple levels of description [35].

Similar to the HKB model [27], second-order coupling is demanded by the experimen-

tal observation of antiphase (and associated multistability) but now in eight-person

coordination; and similar to the extended HKB [13], the model captures how in-

creasing frequency difference δf weakens inphase and antiphase patterns, leading to

segregation but now between two groups instead of two persons. This cross-scale

consistency of experimental observations may be explained by the scale-invariant

nature of the critical coupling ratio κc = 1, the transition point between monosta-

bility (only an all-inphase state) and multistability (states containing any number of

antiphase patterns). The scale invariance suggests that experimental methods and

conclusions for small-scale coordination dynamics have implications for multistability,

phase transitions, and metastability at larger scales, and enables a unified approach
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to coordination that meshes statistical mechanics and nonlinear dynamics.

Another generalization of the classical Kuramoto model by Hong and Strogatz

[141] also allows for antiphase-containing patterns (“π-state”) by letting the sign of

the first order coupling (a) be positive for some oscillators (“the conformists”) and

negative for others (“the contrarians”). However, in contrast to our model, antiphase

induced this way does not come with multistability, nor the associated order-to-order

transitions observed in human rhythmic coordination [28, 142]. The second-order

coupling in our model allows each individual to be both a conformist and a contrarian

but possibly to different degrees [37]. The simple addition of a second stable state

may not seem like a big plus at N = 2 (2 stable states), but it rapidly expands the

system’s behavioral repertoire as the system becomes larger (2N−1 stable states for

N oscillators; with only first-order coupling, the system always has 1N−1 = 1 stable

state, and therefore does not benefit from scaling up). This benefit of scale may be

how micro-level multistability contributes to the functional complexity of biological

systems [32,143].

Besides the multistability of micro patterns (a general feature endowed by higher-

order coupling [20,22,144]), the addition of second-order coupling also affects macro-

level order in terms of critical scaling (see [72] for a summary), i.e. for coupling

strength K > Kc near Kc, the order parameter ‖H‖ (norm of the order function [145])

is proportional to (K − Kc)
β, with β = 1/2 for the classical Kuramoto model and

β = 1 when second-order coupling is added [146,147]. For complex biological systems

like the brain which seem to operate near criticality [148], these two types of scaling

behavior have very different functional implications. When modeling such complex

systems, one may want to have a closer examination or re-examination of empirical

data of large-scale coordination near the critical point, and preferably at multiple

levels of description [115].

Building upon the mathematical context of stationary solutions, we have to recall
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that spontaneous social coordination is highly metastable (e.g. Figure 3.2A-C) [35],

captured by the model when frequency diversity is combined with weak coupling

(e.g. Figure B.1A, in contrast to BC under stronger coupling). Individuals did not

become phase-locked in long run, but dwell temporarily when passing by a preferred

relation (inphase and antiphase) [32, 33] (e.g. red trajectory in Figure 3.5A; note

here stability analysis of stationary solutions provides landmarks for characterizing

metastable patterns). For N > 2, an ensemble can visit different spatial organizations

sequentially (see examples of human behavior in [35], model behavior Figure B.10),

forming complex patterns that extend in both space and time (e.g. Figure 3.8).

Remarkably, the kind of order present in metastable patterns (as demonstrated in

Sections 3.2.6 and B.9) are achieved without unison (i.e. synchronization) or reducing

the behavioral complexity of individual agents. To the contrary, individual oscillators

gain complex behaviors by participating in metastable collective patterns, who are

rather boring when left alone (see contrast between Figure 3.6A1 and Figure 3.7B1).

For these reasons, metastability makes a viable mechanism for encoding complex

information as real-world complex living systems do (e.g. a brain) [28, 33, 115, 131,

149–151]. In the brain, highly coherent patterns like collective synchronization can

be less functional and even pathological [152,153]. Our results call for more attention

to these not-quite coherent but empirically relevant patterns of coordination.

Key experimental observations are captured by our model under the assumptions

of uniform coupling (everyone couples with each other in the same way) and constant

natural frequency. However these assumptions may be loosened to reflect detailed

dynamics. For example, introducing individual differences in coupling style (equation

(3.5)) gives more room to explain how one metastable phase relation may exert strong

influence on another (Figure 3.5A). Long time-scale dynamics observed in the experi-

ment (see Section B.8 in Appendix B) may also be explained by frequency adaptation,

which has been observed in dyadic social coordination [154]. A systematic study of
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the consequences of asymmetric coupling and frequency adaptation on coordination

among multiple agents seems worthy of further experimental and theoretical explo-

ration.

To conclude, we proposed a model that captured key features of human social co-

ordination in mid-sized ensembles [35], and at the same time connected well-studied

large-scale and small-scale models of coordination. The model provides mechanis-

tic explanations of the statistics and dynamics already observed, as well as a road

map for future empirical exploration. As an experimental-theoretical platform for

understanding biological coordination, the value of the middle scale should not be

underestimated, nor the importance of examining coordination phenomena at multi-

ple levels of description.

3.4 MATERIALS AND METHODS

3.4.1 Methods of the human experiment

A complete description of the methods of the “Human Firefly” experiment can be

found in [35]. Here we only recapitulate a few points necessary for understanding the

present paper. For an ensemble of eight people (120 subjects in total), each subject

was equipped with a touchpad that recorded his/her tapping behavior as a series of

zeros and ones at 250 Hz (1=touch, 0=detach), and an array of eight LEDs arranged

in a ring, each of which flashed when a particular subject tapped. For each trial,

subjects were first paced with metronomes for 10s, later interacting with each other

for 50s (instructed to maintain metronome frequency while looking at others’ taps

as flashes of the LEDs). Between the pacing and interaction period, there was a 3s

transient, during which subjects tapped by themselves. Tapping frequency during

this transient has been used to estimate the “natural frequencies” of the subjects

(see Estimating the distribution of natural frequencies). During pacing, four subjects

received the same metronome (same frequency, random initial phase), and the other
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four another metronome. The metronome assignments created two frequency groups

(say, group A and B) with intergroup difference δf = |fA − fB| = 0, 0.3, or 0.6 Hz

(same average (fA + fB)/2 = 1.5 Hz). From a single subject’s perspective, the LED

array looks like the legend of Figure 3.2A (all LEDs emit white light; color-coding

only for labeling locations): a subject always saw his/her own taps as the flashes

of LED 1, members of his/her own frequency group LED 2-4, and members of the

other group LED 5-8 (members from two groups were interleaved to preserve spatial

symmetry).

From the tapping data (rectangular waves of zeros and ones), we obtained the

onset of each tap, from which we calculated instantaneous frequency and phase. In-

stantaneous frequency is the reciprocal of the interval between two consecutive taps.

Phase (ϕ) is calculated by assigning the onset of the nth tap phase 2π(n − 1), then

interpolating the phase between onsets with a cubic spline.

3.4.2 Estimating the distribution of natural frequencies

Human subjects have variable capability to match the metronome frequency and

maintain it, which in turn affects how they coordinate. To reflect this kind of vari-

ability in the simulations, the oscillators’ natural frequencies were drawn from a prob-

ability distribution around the “metronome frequency” (central frequencies fA and

fB for groups A and B). To estimate this distribution from human data, we first

approximated the “natural frequency” of each subject in each trial with the average

tapping frequency during the transient between pacing and interaction periods (see

Methods of the human experiment), and subtracted from it the metronome frequency

(see blue histogram in Figure B.2 from the “Human Firefly” experiment [35]). We

then estimated the distribution non-parametrically, with a kernel density estimator

in the form of
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P̂ (x) =
1

nh

n∑
i=1

K

(
x− xi
h

)
(3.6)

where the Kernel Smoothing Function is Normal, K(y) =
1√
2π
e−

y2

2 . Here n = 2048

(256 trials × 8 subjects) from the experiment. We choose the bandwidth h = 0.0219,

which is optimal for a normal density function according to [155],

h =

(
4

3n

)1/5

σ (3.7)

where σ is the measure of dispersion, estimated by

σ̃ = median{|yi −median{yi}|}/0.6745 (3.8)

where yi’s are samples [156]. The result of the estimation is shown in Figure B.2 (red

curve).

3.4.3 Phase-locking value and level of integration

The (short-windowed) phase-locking value (PLV) between two oscillators (say x and

y) during a trial is defined as

PLVxy =
1

W

W∑
w=1

1

M

∣∣∣∣ M∑
m=1

exp(iφxy[(w − 1)M +m])

∣∣∣∣ (3.9)

where φxy = ϕx − ϕy, W is the number of windows which each φ trajectory is split

into, and M is number of samples in each window (in the present study, W = 16 and

M = 750, same as [35]).

Intragroup PLV (PLVintra) is defined as

PLVintra =

((
|A|
2

)
+

(
|B|
2

))−1( ∑
x,y∈A

PLVxy +
∑
x,y∈B

PLVxy

)
(3.10)
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where A and B are two frequency groups of four oscillators, corresponding to the

design of the “Human Firefly” experiment [35], A = {1, 2, 3, 4}, B = {5, 6, 7, 8}, and

|A| = |B| = 4.

Intergroup PLV (PLVinter) is defined as

PLVinter =
1

|A||B|
∑

x∈A,y∈B

PLVxy. (3.11)

In both the human and simulated data, comparisons of PLVintra and PLVinter for

different levels of δf were done using two-way ANOVA with Type III Sums of Squares,

and Tukey Honest Significant Difference tests for post-hoc comparisons (shown in

Figure 3.3BD).

The level of integration between two frequency groups is measured by the re-

lationship between intragroup coordination (measured by PLVintra) and intergroup

coordination (measured by PLVinter). The groups are said to be integrated if intra-

group coordination is positively related to intergroup coordination, and segregated

if negatively related. Quantitatively, for each combination of intergroup difference

δf and coupling strength a (assuming a = b for our model, assuming b = 0 for the

classical Kuramoto model), we use linear regression

PLV
(δf,a)
inter,k = β

(δf,a)
0 + β

(δf,a)
1 PLV

(δf,a)
intra,k + error

(δf,a)
k (3.12)

where PLV
(δf,a)
·,k is the inter/intra-group PLV for the kth trial simulated with the

parameter pair (δf, a), and the slope of the regression line β
(δf,a)
1 is the measure of

level of integration between groups. If β1 > 0, the groups may be said to be integrated;

if β1 < 0, segregated. The set {(δf, a)|β(δf,a)
1 = 0} is the critical boundary between

the domains of integration and segregation.
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3.4.4 Method of simulation

All simulations were done using the Runge-Kutta 4th-order integration scheme, with

a fixed time step ∆t = 0.004 for duration T = 50 (matching the sampling interval and

the duration of interaction period of the human experiment [35]; second may be used

as unit), i.e. for system Ẋ = f(X), with initial condition X(0) = X0, the (n + 1)th

sample of the numeric solution can be solved recursively

X[n+ 1] = X[n] +
1

6
(k1 + 2k2 + 2k3 + k4) (3.13)

where

k1 = ∆t f(X[n]) (3.14)

k2 = ∆t f(X[n] + k1/2) (3.15)

k3 = ∆t f(X[n] + k2/2) (3.16)

k4 = ∆t f(X[n] + k3). (3.17)

The solver was implemented in CUDA C++, ran on a NVIDIA graphics processing

unit, solving every 200 trials in parallel for each parameter pair (δf, a). For each

trial, initial phases were drawn randomly from a uniform distribution and natural

frequencies the distribution defined by equation (3.7). Here 200 trials are used per

condition, greater than that of the human experiment [35] to obtain a more accurate

estimate of the mean.
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CHAPTER 4

TOPOLOGICAL ANALYSIS OF MULTIAGENT METASTABLE

COORDINATION

In the preceding chapters, statistical analyses of the Human Firefly experiment [35]

have primarily been time-independent, although we have complemented these statis-

tical results with example dynamics. This is in part due to a lack of well-suited tools

for characterizing complex spatiotemporal patterns and detecting pattern switching in

high-dimensional nonlinear dynamical systems. Regarding coupled oscillators, com-

plex spatiotemporal patterns emerge during metastable coordination between mul-

tiple agents (i.e. agents coordinate intermittently with each other at certain phase

relations; see Sections 2.2.1 and 3.2.6). In contrast to dyadic metastable coordina-

tion, whose spatiotemporal scale is unique for fixed boundary conditions, multiagent

metastable coordination allows different spatial and temporal scales to coexist, due

to the addition of spatial components (see Section 3.2.6). Multiagent metastable pat-

terns are thus unlikely to be distinguished by a single scalar at a particular level of

description (e.g. one single order parameter at the statistical level). On the other

hand, because the state space is high-dimensional and often sparsely covered by data,

it is also unlikely to find structures in the dynamics by taking into account every

micro-level detail. In other words, some statistics or dimensionality reduction has to

be done. Here we explore the utility of tools from computational algebraic topology

for such (nonlinear) dimensionality reduction. With these tools, it is possible to keep

track of topological features in the coordination patterns instead of the state variables

themselves.

In the following sections, we center our discussion around two examples of single
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trial dynamics reported in [35] for proof of concept. In Section 4.1, the original dy-

namics is given and the utility of traditional state-based recurrence plots is discussed.

In Section 4.2, a topology-based method is introduced for detecting structures in the

dynamics. The results of applying this topology-based method on the examples are

shown in Section 4.3 and discussed in Section 4.4.

4.1 EXAMPLES OF COORDINATION DYNAMICS

In this section, we show the original dynamics of two example trials – one involves

three interacting agents, the other eight – from the Human Firefly experiment [35]

(also see Chapter 2). By contrasting these two examples, we want to demonstrate

what problems arise with traditional methods when the number and diversity of

agents are increased in the coordination dynamics.

We begin with the three-agent example (Figure 4.1), which is easily interpretable

visually. In Figure 4.1A, coordination among three agents (1, 3, 4) are shown in terms

of two phase relations (1-3 magenta, and 3-4 orange). From 10s to 40s, the system

visited recurrently an all-inphase pattern (marked by 3 black triangles; between the

triangles, only 3-4 are inphase, with agent 1 wrapping), before switching to an inphase-

antiphase pattern around 40s (1-3 inphase, 3-4 antiphase in Figure 4.1A; due to

a sudden slowing down of agent 3, orange trajectory around 40s in Figure 4.1B;

frequency is the time derivative the phase). The ease of interpretation comes from

the facts that the number of interacting agents is small (low-dimensionality) and that

they are close in frequency (Figure 4.1B), as a result of which their phase coordination

occurs on visually comparable time scales.
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Figure 4.1: An example of triadic coordination dynamics. Coordination among three
agents (labeled as 1, 3, and 4) is shown as the dynamics of two pair-wise relative phases
(A) and three instantaneous frequency trajectories (B). Around 10s, three agents formed an
all-inphase relation (φ1,3 ≈ φ3,4 ≈ 0 rad) for a few seconds, marked by a black triangle on
the left in (A). This pattern recurred intermittently two more times (middle, right triangle
in A), which ended when pair 3-4 switched to antiphase (40-48s, orange trajectory φ3,4 ≈ π
rad). Both relative phase trajectories (A) evolve on a slow time scale because the frequency
of these three agents are very close (B).

This ease of analysis is lost when more interacting agents and frequency diversity

are involved, as illustrated in the eight-agent example (Figure 4.2). The dynamics

of pairwise relative phases (Figure 4.2A) is much less intelligible now that they are

evolving at very different time scales, e.g. slow dynamics for pairs 3-2, 5-7, and 6-

8 (thickened trajectories, mostly horizontal, reflecting strong phase coordination) in

contrast to fast dynamics for other pairs (thin trajectories, mostly wrapping, i.e. with

a steep slope). It is also not clear how these multiple phase relations constrain each

other in forming higher-level structures. The frequency dynamics (Figure 4.2B) is

more informative regarding the overall trend in the organization (e.g. eight agents

were separated into two frequency groups at the beginning, coded in warm vs. cold

colors, and became entangled at the end), but not much about how phase relations

formed or changed in relation to the overall trend. This kind of multiagent dynamics
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involving multiple spatiotemporal scales requires additional computational tools for

characterizing coordination patterns and detecting pattern transitions.

Figure 4.2: An example of eight-agent coordination dynamics shown as seven pair-wise
relative phases (A) and eight instantaneous frequency trajectories (B). In (A), slowly varying
phase relations are shown as thick lines (orange trajectory 3-2, green 5-7, cyan 6-8), whereas
fast varying phase relations are shown as thin lines (with much steeper slopes than the thick
lines). In (B), the corresponding frequency trajectories indicate that the frequency diversity
is much greater than in Figure 4.1B. The ensemble of eight started with two frequency groups
(under the experimental condition of intergroup difference δf = 0.6 Hz), one in warm colors
(1, 2, 3, 4) and one in cold colors (5, 6, 7, 8). But toward the end of the trial, members
from the two groups begin to mingle.
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Figure 4.3: Recurrence plots of relative phase dynamics. (A) shows the recurrence of
phase relations among the three agents (the state variable is a vector with 2 relative phases
shown in Figure 4.1A as components) and (B) that of the eight agents (the state variable
is a vector with 7 relative phases in Figure 4.2A as components).

Recurrence plot [157,158] is a powerful tool for visualizing and analyzing patterns

of nonlinear dynamical systems, especially when the state space itself is too high-

dimensional to visualize. Rather than showing the state variable per se, it shows the

relation between states at different points in time, e.g. as a distance matrix, from

which one can infer how frequently a system visit different points in the state space.

In Figure 4.3AB, we show the recurrence plots of the two examples above in terms of

the state variable ~φ(t), whose components are relative phases shown in Figure 4.1A

and 4.2A respectively (the components of the distance matrices are defined as

dt1,t2 = ‖W
(
~φ(t1)− ~φ(t2)

)
‖ (4.1)

where function W wraps each component to the interval (−π, π] and ‖ · ‖ is the

L2-norm). The recurrence of relative phases clearly captures the structure of the

triadic coordination (Figure 4.3A; a 3-by-3 grid between 10 and 40s, reflecting the

main recurrent pattern; the blocks before 10s and after 40s reflect two other pat-

terns), but does not reveal much structure in the eight-agent case (Figure 4.3B). This
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illustrates that conventional recurrence plots which work for low-dimensional coordi-

nation dynamics may not work well for high-dimensional dynamics involving multiple

spatiotemporal scales. In order to shed more light on the eight-agent example, we

next present a method for constructing a new type of recurrence plot, which quantifies

the recurrence of topological features (e.g. connected components and loops) in the

coordination patterns across multiple scales.

4.2 METHOD OF TOPOLOGICAL ANALYSIS

As shown in Section 3.2.6, multiagent metastable patterns can be classified by their

topological and geometric features. The method presented hereafter aims to identify

changes of topological features in multiagent coordination patterns as a way to detect

phase transitions. To do so, we need to first transform the original data into a

sequence of point clouds, each representing the coordination pattern at a particular

time (Section 4.2.1), then compute the topological portraits (i.e. persistent homology)

of each point cloud and compare these portraits across time (Section 4.2.2).

4.2.1 Coordination patterns as point clouds

For a point cloud to represent a coordination pattern, the distance between points has

to capture essential aspects of coordination between agents. The behavioral dynamics

of N agents was initially represented as N time series of absolute phases (ϕi for integer

0 < i ≤ N). However, a small distance in phase (i.e. relative phase near zero) does not

necessarily imply coordination (phases may coincide frequently between oscillators of

very different natural frequencies, i.e. even a broken clock is right twice a day), and

conversely, coordination does not necessarily imply small distance in phase (since

coordination can happen at π or other relative phases as shown in Chapter 2 and 3).
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Figure 4.4: Decomposition of absolute phase dynamics for the eight-agent example. The
absolute phase of each agent is decomposed into to a slowly varying frequency component
(A) and a fast varying residual phase (B) (this type of decomposition is well-known in
coupled oscillator theory, see e.g. [159]).

A more reasonable way to represent coordination patterns is by instantaneous

frequency (Figure 4.1B, 4.2B) – the time derivative of absolute phase. Whenever

there is phase coordination, the derivative of the relative phase must be small (e.g.

φ trajectories flattening in Figure 4.1A), hence the instantaneous frequency of two

agents approaches each other. During sudden transitions, however, instantaneous

frequencies may oscillate with a high amplitude, approaching each other without

coordinating. To resolve this ambiguity (i.e. closeness in instantaneous frequency due

to actual coordination or fluctuations near a transition), we decompose the absolute

phase of each agent into a slowly varying frequency component (e.g. Figure 4.4A

for the eight-agent example) and a fast varying residual phase (phase for short in

Figure 4.4B) without losing any information (i.e. absolute phase can be restored by

ϕ = 2π
(
frequency(t) · t+ phase(t)

)
). To do so, we first fit a piece-wise cubic spline

(ϕ̂) to the absolute phase (ϕ) (least-square, using splinefit in Matlab with robust

fitting parameter β = 0.5 [160]). Knots of the spline were chosen at 2s intervals,

based on the observation that dyadic phase coordination mostly exceeded 2s (about
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87%, see distribution in Fig B of S1 File in [35]). The slow component (frequency) is

the derivative of ϕ̂ and the fast component (residual phase) is ϕ− ϕ̂.

Finally, time series of these two components are segmented into 2s windows (con-

secutive windows overlap by 1s) and the coordination pattern around time t (s) is

represented as a point cloud in 3-dimensional space – a set of M points whose coor-

dinates correspond to local time, residual phase, and frequency respectively (we will

see an example later in Figure 4.7A, where each point in the point cloud is shown as

a small ball; M = 160 for this study, containing 20 time points for each of the eight

agents, centered at 0.1s intervals), i.e. X(t) = {x1(t), · · · , xi(t), · · · , xM(t)} where

xi(t) ∈ Ut = It × S1 × R+ with It = [t − w/2, t + w/2] for a coordination pattern

sampled at time t (s) in a window of w = 2 (s). To later compute the topological

features associated with each point cloud X(t), we need to equip the space Ut with a

metric, i.e. the distance between any point a = (a1, a2, a3)ᵀ and b = (b1, b2, b3)ᵀ ∈ Ut,

d(a, b) = ‖(a1 − b1,W (a2 − b2), a3 − b3)ᵀ‖ (4.2)

where

W (a) =


a |a| ≤ 0.5

1− a otherwise

. (4.3)

Here the three dimensions of Ut have different units, so in principle, one can rescale

each dimension by modifying the metric. Nevertheless, they are not independent, i.e.

[second][cycle][cycle/second], thus cannot be scaled arbitrarily. The most natural

choice is to have no scaling, which is adopted in the present study.

In general, one may customize the representation based on the nature of agent

behavior (e.g. rhythmic or non-rhythmic) and the type of coordination of interest (e.g.

phase coordination in the present case). But as long as a sequence of point clouds are

properly constructed to reflect the patterns of interest, the following section provides

a potential method to reveal structures in the dynamics via topological data analysis.
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4.2.2 Multiscale topological portraits and their dynamics

In this section, we show how to compute topological portraits for each coordination

pattern and to study the dynamics of such portraits. The goal is to detect sudden

topological transitions in the coordination patterns, allowing us to return to the

original time series to study the nature of such transitions. Persistent homology is

the basis of our analyses. We will first give an intuitive description of what persistent

homology is and why it is useful for understanding complex metastable coordination,

before filling in with necessary technical details (for a formal account of homology,

see [161], and persistent homology, see [162–164]).

Homology captures fundamental topological features of a structure like connected

components, loops, cavities, and their higher-dimensional analogues (“holes” of dif-

ferent dimensions). Persistent homology keeps track of these features across scales.

It was initially conceived to distinguish the correct topological features of a sampled

structure (e.g. the number of connected components and loops of a torus) from noise,

since correct features are more persistent across scales [165]. In the present study,

we are interested in multiscale coordinative structures, where the set of “correct” fea-

tures may vary with scale. A figurative example is given in Figure 4.5, which can be

seen as a structure of 19 connected components and 19 loops (from 19 A’s) at one

scale, or 1 connected component and 2 loops (from 1 B) at a grosser scale (commonly

used to study human local/global perception [166]). The point is not to determine

whether one set of features is more correct than the other, but rather to combine

these two levels of description to obtain a more complete picture of the structure. As

for metastable coordination patterns (as constructed per Section 4.2.1), agents form

(approximately) connected components during phase coordination and form loops

due to the recurrent nature of metastable coordination (see behavior of agent 2, 3, 4

in Figure 4.4A) – features that can be suitably described by homology. Moreover, as

discussed in Section 4.1 and previous chapters, multiagent metastable patterns pos-
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sess interesting features across multiple spatiotemporal scales, which maybe elusive

to traditional tools but can be captured by the persistence of homological features.

Figure 4.5: A letter B made up of many A’s. Topologically, a “A” is one connected
component with one loop and a “B” is one connected component with two loops. At a fine
scale, this figure may be said to have 19 connected components and 19 loops; or at a gross
scale, it may be said to have 1 connected component and 2 loops. A complete description
of this figure needs to embrace both scales.
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Figure 4.6: Simplices and a simplicial complex. Simplices are elementary geometric objects
of different dimensionality, which can be combined into more complex structures, i.e. sim-
plicial complexes. A k-simplex can be thought of as a k-dimensional triangle, determined by
its (k+1) vertices. For example, a 2-simplex is a conventional triangle, determined by three
vertices [x1, x2, x3], a 0-simplex a vertex determined by itself [x1], and a 1-simplex an edge
determined by two vertices [x1, x2]. A simplicial complex therefore can be described com-
binatorially as a set of vertices plus a collection of its subsets (higher-dimensional simplices
connecting those vertices).

A coordination pattern (point cloud) X = {x1, · · · , xM} measured at a specific

scale ε refers to a union of balls centered at each point in X (e.g. Figure 4.7A-C), i.e.

Xε =
⋃M
i=1Bε/2(xi). Our goal is to identify independent homological features (“holes”)

in Xε and record how they vary (e.g. emerge or disappear) with scale ε (diameter

of balls). To compute these features algebraically, we first need to triangulate the

structure Xε into a simplicial complex. The building blocks of a simplicial complex
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are simplices, which can be thought of as generalized triangles (Figure 4.6), i.e. a k-

simplex is a k-dimensional triangle defined by its (k+ 1) vertices. A familiar example

is a network, which is a simplicial complex containing only 0- and 1-simplices (i.e.

vertices and edges). In the present study, we construct the Rips complex Rε(X) [167]

for each pattern X at scale ε. Rε(X) is an abstract simplicial complex consisting of all

points in X as its vertices and any k-simplex whose vertices are within ε distance with

each other (distance as defined in equation 4.2). Rε(X) approximates the topological

structure of Xε, which is less accurate than its topologically faithful counterparts (e.g.

a Čech complex [168]), but much more economical computationally and thus adopted

in the present method (see [169] regarding how Rips and Čech complexes are related).

Now our task amounts to finding the “holes” in Rε(X). A hole is simply some

empty space surrounded by a closed chain of geometrical elements. In other words,

a k-dimensional hole can be identified by a cycle formed by a chain of k-simplices

(or a k-cycle) that is not the boundary of any (k + 1)-simplex. To compute these

holes algebraically, we represent a simplicial complex as a sequence of chain groups

Ck (chains generated by k-simplices of Rε(X), or k-chains),

· · ·Ck+1
∂k+1−−→ Ck

∂k−→ Ck−1 → · · · → C2
∂2−→ C1

∂1−→ C0
∂0−→ 0 (4.4)

where a boundary operator ∂k+1 maps (k+1)-simplices to their boundaries, which are

k-cycles that do not enclose any hole. Any k-cycle, say γ, per se has no boundary,

i.e. ∂kγ = 0. To find the holes, one simply “removes” the boundaries (image of ∂k+1)

from the collection of all cycles (kernel of ∂k),

Hk = ker ∂k/ Im ∂k+1 (4.5)

where Hk is the k th homology group of the simplicial complex (or to be scale-specific,

Hε
k of Rε(X)) and its generators capture independent k-dimensional holes.
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Figure 4.7: Persistence of topological features. (A-C) shows a coordination pattern (point
cloud) represented at three different scales ε, i.e. a union of balls with diameter ε = 0.1 (A),
0.2 (B), or 0.5 (C) centered at each point. The 0th and 1st persistent homology (connected
components and loops respectively) of this point cloud is shown in (D,E) as barcodes and
in (F,G) as persistence landscapes. In (D,E), each horizontal bar represents a connected
component (D) or loop (E), whose left (right) end indicates its birth (death) scale. Right
arrow in (D) indicates that this component never dies (one connected component remains
at any scale). (F,G) summarize the same information as a sequence of landscape functions
(λ), reflecting the most to least prominent homological features across scales (blue to green
lines are the five largest landscape functions).

Persistent homology keeps track of each independent k-dimensional hole, which

may emerge at any scale, throughout its life span across scales. It concerns a family

of simplicial complexes Rεi (equation 4.6), capturing the topology of pattern X from
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finer to grosser scales (0 ≤ εi < εi+1 for any index 0 ≤ i < P − 1),

Rε0(X) ⊆Rε1(X) ⊆ · · · ⊆Rεi−1
(X) ⊆Rεi(X) ⊆Rεi+1

(X) ⊆ · · · ⊆RεP (X)

(4.6)

{Cε0
k }

f0−→{Cε1
k }

f1−→ · · · →{Cεi−1

k } f i−1

−−→{Cεi
k }

f i−→{Cεi+1

k } → · · · →{CεP
k }

(4.7)

each associated with a sequence of chain groups {Cεi
k } (equation 4.7). Here the sim-

plicial complex and associated chain groups capturing X at a finer scale are included

in those of a grosser scale, captured by the inclusion maps f i’s. Importantly, these

inclusion maps help to associate the holes (or non-bounding cycles) in the complexes

across scales. Each independent k-dimensional hole can then be represented as an

interval (εb, εd), where εb is the scale at which a hole emerges, i.e. its birth scale, and

εd the scale at which it was filled in, i.e. its death scale. The life span εd− εb indicates

how persistent the hole is across scales (not to be confused with persistence over time,

e.g. metastable dwells). With this interval representation, we can visualize these kth

homological features across scales as barcodes [169] (Figure 4.7D and E shows the

persistence of generators of the 0th and 1st homology groups H0 and H1 respectively,

capturing connected components and loops across scales). The set of all intervals

constitutes a multiscale topological portrait of a coordination pattern X. Using the

software Perseus developed by Nanda [170], we compute such topological portraits

(0th and 1st persistent homology) for each pattern X(t) (constructed as described in

Section 4.2.1) for t = 2, 3, · · · , 48.

As mentioned at the beginning of this section, our end goal is to study the dy-

namics of such topological portraits in order to identify transitions in coordination

patterns. This requires us to define a measure of distance between any two topo-

logical portraits. In the present study, we use persistence landscape distance as a

metric, considering its low computation time and potential for statistical use [171].

Persistence landscapes [172] translate a set of intervals {(ε(i)b , ε
(i)
d )}Mi=1 into a sequence
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of piecewise-linear landscape functions {λ(l)}Ll=1. Intervals are first used to construct

a sequence of tent functions

fi(ε) =


0 ε /∈ (εb, εd)

ε− εb ε ∈ (εb,
εb+εd

2
]

εd − ε ε ∈ ( εb+εd
2
, εd)

(4.8)

for i = 1, 2, · · · ,M . λ(l)(ε) is the lth largest value of {fi(ε)}Mi=1. The smaller the l, the

more prominent the features captured by the landscape function λ(l) (e.g. Figure 4.7

F, G shows first five landscape functions computed from intervals in D, E respectively;

an interval with infinity that appears in every barcode is ignored in the computation,

e.g. Figure 4.7D). λ(L) is the smallest function (λ(L)(ε) ≤ λ(l)(ε) for any l and ε) that

is not zero for all ε. Now we can compare topological portraits of coordination pat-

terns just like functions. We define the distance between the kth topological portrait

(persistent homology) of two coordination patterns X and X ′ as the sup norm of the

difference between their corresponding average landscape functions,

Dk(X,X
′) = ‖λ̄k(ε)− λ̄′k(ε)‖∞ = sup

ε
|λ̄k(ε)− λ̄′k(ε)| (4.9)

where λ̄k(ε) = 1
K

∑L
l=1 λ

(l)
k (ε), and {λ(l)

k }Ll=1 and {λ′(l)k }Ll=1 are the kth persistence

homology of X and X ′ represented as landscape functions.

With a metric defined, we are in a position to study the recurrence plot of topo-

logical portraits, which is a distance matrix with components di,j = Dk(X(ti), X(tj))

for the kth persistent homology of a time series of coordination patterns X(t) (Figure

4.8A-B, D-E). The subdiagonal of this matrix reflects the rate of change of topological

features as a function of time. To provide additional comparison between topology-

based and non-topological recurrence, we define a state-based metric by treating each
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point cloud with M points as a state vector with 3M components,

dx(X,X
′) = ‖(x1 − x′1, · · · , xM − x′M ,

W (xM+1 − x′M+1), · · · ,W (x2M − x′2M),

x2M+1 − x′2M+1, · · · , x3M − x′3M)‖ (4.10)

for coordination patterns X = {xi}Mi=1 and X ′ = {x′i}Mi=1 , where W follows the defi-

nition in equation (4.3). Recurrence plots based on this metric are included (Figure

4.8C, F) in addition to the traditional recurrence plots of relative phase (Figure 4.3)

to show how much information is gained by the decomposition alone (Section 4.2.1),

without any topological analyses. Notice that dx(X(ti), X(tj)) increases with the

time difference |ti − tj|, which does not reflect the difference in coordination pattern.

Therefore we shift each point in X(t) along the time-axis backwards by t, before com-

puting the recurrence plot. This is not a problem for Dk, since topological portraits

are invariant under translation of the pattern.

In the next section, we will show how the topological method outlined here reveals

transitions in the coordination dynamics between eight agents (Figure 4.2) that eluded

traditional methods of visualization and analysis (Figure 4.2A, Figure 4.3B).

4.3 RESULTS

Before investigating the eight-agent example, we first validate this method with the

triadic example (Figure 4.1), the dynamics of which we already know (see Section 4.1).

Figure 4.8AB shows the recurrence of topological features, i.e. connected components

(0th persistent homology) and loops (1st persistent homology) respectively. In Figure

4.8A, three moments stand out against the background (marked by black triangles),

indicating sudden changes in connected components. These moments coincide with

three “escapes” from the all-inphase pattern in the original relative phase dynamics

(steepened magenta trajectory φ13 following each of the three black triangles in Figure
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4.1A; the same interruptions in the coordination pattern can be seen in Figure 4.3A).

Figure 4.8B reveals a small transition around 10s and a large transition around 40s

(marked by black triangles) in terms of loops. They coincide with the time of the

first formation of the all-inphase pattern and its eventual destruction (replaced by

inphase-antiphase pattern), which can be clearly seen in Figure 4.1A and Figure 4.3A.

Taken together, topological recurrence (Figure 4.8AB) is able to faithfully capture

important transitions of coordination patterns observed in the triadic example (Figure

4.1), as much as the traditional recurrence plot of the relative phase (Figure 4.3A).

For comparison, a state-based recurrence plot is shown in Figure 4.8C (i.e. treating

each point cloud as a state vector without extracting topological features, as defined

by equation 4.10), which also captures the essential transitions but not as definitely

as the topology-based recurrence plots (Figure 4.8AB) or the traditional recurrence

plot of relative phases (Figure 4.3A). This indicates that the clarity present in the

topology-based recurrence plots (Figure 4.8AB) is not solely due to the decomposition

into slow and fast components, or more generally, the point cloud representation of

coordination patterns (Section 4.2.1).
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Figure 4.8: Recurrence plots of topological features versus states. (A-B) shows the
recurrence of connected components and loops respectively for the triadic example, where
the color of each pixel indicates the topological distance between the coordination pattern at
time x and time y, as defined in equation (4.9), i.e. D0(X(x), X(y)) for (A), D1(X(x), X(y))
for (B). Black triangles on top mark the time of topological transitions. They correspond
very well with transitions in the original relative phase dynamics (Figure 4.1A) and its
associated recurrence plot (Figure 4.3A). (C) shows the recurrence of states, where the color
of each pixel reflects the distance between point clouds X(x) and X(y) as state vectors, as
defined in equation (4.10), instead of their topological portraits. The same transitions also
appear in (C) as in (A-B) though less sharp. (D-E) shows the corresponding recurrence plots
for the eight-agent example (Figure 4.2). In the recurrence plot of connected components
(D), two transitions are apparent, each of which lasts about 5s (marked by black brackets).
The onset of first transition (around 10s) and the offset of the second (about 33s) also stands
out in the recurrence plot of loops (E), marked by black triangles. These features are not
apparent in the state-based recurrence plot (F, also Figure 4.3B).

Following the basic validation above, we are ready for the eight-agent case. The

recurrence of connected components (Figure 4.8D) is strikingly structured, compared

to the original dynamics (Figure 4.2), the recurrence of relative phases (Figure 4.3B)

and the state-based recurrence of point clouds (Figure 4.8F). It shows a major tran-

sition (in terms of connected components) around 30s and a minor one around 10s

(marked by black brackets on top of Figure 4.8D). The onset of the 10s transition
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and the offset of the 30s transition are also highlighted by the transition of loops

(marked by triangles in Figure 4.8E). Next we return to the original relative phase

and frequency dynamics (Figure 4.9) to investigate what underlies these topological

transitions, with an emphasis on the transitions of connected components.

We begin with the major transition (of connected components) around 30s (second

period with black background in Figure 4.9). Before the onset of this transition, the

ensemble was in a relatively stable configuration with three frequency pairs (Figure

4.9A, trajectories enclosed by black circles), a lone wolf (agent 1, magenta trajectory

on top in Figure 4.9A), and a commuter (agent 4, yellow trajectory in Figure 4.9A)

oscillating between its neighbors (i.e. lone wolf agent 1, and pair 2-3). At the onset of

the transition (28s), the top two frequency pairs broke up and an episode of partner-

switching occurred at 30s (from configuration [1, 4, 3-2, 5-7, 6-8] to [1, 4-3, 2-5, 7-6-

8]). After another partner-switching at the offset of the transition (33s), the original

configuration was restored. This partner-switching dynamics is also reflected in the

relative phases (slowly varying relative phases in Figure 4.9B correspond to circled-

pairs in A, and fast varying relative phases in C correspond to relations indicated

by double arrows in A). Among the slowly varying phase relations (Figure 4.9B),

3-2 (orange) departs from antiphase (±π) at the onset of the transition (break-up

of the frequency pairs), wraps for one cycle during the transition (orange trajectory

tilting), and returns to antiphase at the offset of the transition (green trajectory 5-7

has a similar action, but only wraps for half a cycle during the transition from near

inphase to near antiphase). Complementarily, the fast varying phase relation 4-3

(yellow trajectory in Figure 4.9C) stops wrapping during the transition and dwells

near antiphase (forming a transient new pair; similar action is observed in 2-5 and

7-6 in Figure 4.2A, though not repeated in Figure 4.9C to avoid visual crowding). In

short, we see an interesting non-local transition of multiagent coordination patterns

in both frequency and relative phase, detected by a major transition in the topological
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portrait.

If we trace the global configuration right before the major transition (3 pairs +

1 lone wolf + 1 commuter, around 25s in Figure 4.9A) backwards in time, we reach

the minor transition around 10s (first period with black background). In fact, the

minor transition of connected components marks the inception of the said global

configuration, where agent 1 (magenta in Figure 4.9A) departs from the warm-color

group becoming a lone wolf (also seen in Figure 4.9C as suddenly increased slope of

relative phase 1-4), as pairs 3-2, 5-7 stabilize (Figure 4.9B orange, green trajectories

become flat; the three trajectories in B are in fact most stable during this period

rather than afterwards). In contrast to the major one, this minor transition signifies

multiple local events.
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Figure 4.9: Breaking down the frequency, relative phase and topological dynamics of the
eight-agent coordination. (A-C) shows selected trajectories of frequency and relative phase
from Figure 4.2, after a 2s moving average. (A) shows the frequency dynamics of all eight
agents. (B) shows the dynamics of three slowly varying relative phases (thickened trajec-
tories in Figure 4.2A), corresponding to three pairs of frequency trajectories enclosed by
black circles in (A). (C) shows the dynamics of two fast varying relative phases (among the
thin trajectories in Figure 4.2A), corresponding to relations between frequency trajectories
connected by double arrows in (A). (D) shows the rate of change of connected components
(blue trajectory) and states (yellow trajectory), which is the distance between two con-
secutive patterns under the metric D0 (equation 4.9) and dx (equation 4.10) respectively.
Both trajectories are normalized by mapping [min,max] 7→ [0, 1] for comparison. Two tran-
sitional periods seen in Figure 4.8D are highlighted with black backgrounds, bordered by
adjacent peaks in the blue trajectory in (D). See text for interpretations.

The transitions of loops (marked by triangles in Figure 4.8E) provide supplemen-

tary descriptions of the two transitions discussed above. In particular, the transition

of loops around 10s reflects local disturbances, i.e. high amplitude oscillation in agent

1 and 3’s frequency (magenta and orange trajectories in Figure 4.2B and Figure 4.4B)
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in anticipation of the departure of agent 1 (and the corresponding transition in con-

nected components). The transition of loops near 32s is weaker and reflects small

oscillations of agent 1, 7 and 8 (magenta, blue and purple trajectories near 32s in

Figure 4.4B) anticipating the end of the major transition of connected components.

Overall, the recurrence plots of topological portraits not only reveal transitions of

coordination patterns in the data that eluded traditional methods but also inform us

about the relative significance of such transitions (i.e. global or local transition, high

or low disturbances). To have a sense of why state-based recurrence is not sensitive

to such information, we compare side by side the topology-based rate of change (blue

trajectory in Figure 4.9D) and the state-based rate of change (yellow trajectory). By

studying the onset of two transitions (the left edge of black rectangles in Figure 4.9D),

we find that a sudden change in topology (blue peak, 28s) does not require a sudden

change of state (i.e. position of individual points in the point cloud), and conversely, a

sudden change of state (yellow peak, 9s) does not imply a sudden change in topology.

In other words, the topological method captures the interdependency between the

movement of individual points in the point cloud, which cannot be captured, in

principle, by the “sum” of independently measured movements of each point.

4.4 DISCUSSION

In this chapter, we adopted a topological approach to analyzing metastable coordi-

nation dynamics involving many diverse agents, and demonstrated its efficacy in a

proof-of-concept study of two example trials of human coordination from a recent

experiment (Chapter 2, [35]). By studying the recurrence and dynamics of topolog-

ical portraits, we revealed structures in the dynamics and important transitions of

coordination patterns that eluded traditional methods (contrast Figure 4.9DE for the

topological method with Figure 4.2 and Figure 4.3B for traditional methods). For

example, a non-local topological transition (major transition around 30s in Figure
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4.8D, 4.9) was discovered, showing how sudden, coordinated pattern switching can

occur across multiple local groups that are segregated in frequency. This transition

has been reported and discussed in [35] but the method of discovery was deferred till

the present work for a full exposition.

The topological approach works well in the present case due to a few important

features, and may prove advantageous in more general applications to coordination

phenomena in complex systems. First, simplicial complexes are purely relational

(coordinate-free) representations of structures, i.e. any rigid motions of the structure

are “taken out” when converted into a simplicial complex. The subsequent topo-

logical analyses also retain relational-only information. In the study of coordination

phenomena, relational quantities are of the essence [28], and can be gleaned from

a dynamic pattern by mapping it to a simplicial complex. Second, topology is the

mathematical discipline that helps connect pieces of local information into global in-

formation [173]. In multiagent coordination, the number of relational quantities mul-

tiplies (N(N − 1)/2 dyadic relations between N agents can be uniquely determined

by N − 1 independent ones, as in Figure 4.2A). These relational quantities constrain

each other and form higher-order structures [35,40] which may not be discernible by

examining each quantity individually. Algebraic topology and computational alge-

braic topology provide a mature set of tools to build global pictures from such local

(e.g. dyadic) relational quantities. As demonstrated in our results, the ability of

topological portraits to represent global information is a key to detecting coordinated

collective transitions that are not a simple accumulation of independent changes (see

Figure 4.9D and corresponding text, as explained at the end of Section 4.3). Last but

not least, as discussed in Section 4.1 and previous chapters, multiple spatiotemporal

scales coexist in metastable coordination between multiple diverse agents. Persistent

homology [162, 165] provides a well-developed mathematical framework to represent

multiscale topological features (scale-wise resolution only limited by initial data and
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computational feasibility). Beyond the specific context of metastable rhythmic co-

ordination, relational, local-global and multiscale information are of key interest in

the study of complex systems in general (e.g. [92, 174–176]). Thus the topological

approach outlined in the present work may serve as a prototype for more general

analyses of complex systems.

Over the past decade, computational topology has gradually attracted biologists’

attention as a set of new tools to shed light on geometrical or topological struc-

tures in complex, high-dimensional data that were difficult to quantify or visualize

by traditional means. For example, various types of topological portraits (not lim-

ited to persistent homology) have been used to study the shape of viral evolutionary

tracks [177], RNA folding pathways [178], collective encoding of global spatial organi-

zation by groups of neurons [179,180] and the geometry of neural dynamics [181,182]

(see [183] for more applications in neuroscience). In contrast to these studies, where

topological portraits are the primary subject of analyses and interpretation, here we

focused on the change of topological portraits without direct interpretation of the

portraits themselves. Instead, we returned to the original time series to recover what

underlie such changes (transitions). There are technical and theoretical reasons to do

so, which will be discussed next.

Technically, the exact content of a topological portrait may be affected by how the

original data were sampled and subsequently how point clouds were constructed from

the data (Section 4.2.1). In particular, its direct interpretation may vary with the

metric associated with the point cloud (equation 4.2), which in the present study is

subject to scaling (stretching a point cloud along different dimensions). Nevertheless,

we preserve our ability to differentiate between patterns based on their topological

portraits, so long as the data are sampled in the same way and the point clouds defined

by the same metric, as in the present study. If we see a change in the topological

portrait, there must be a corresponding change in the coordination pattern; and if the
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change in the coordination pattern is sufficiently small, the change in the topological

portrait is also small (due the fact that the topological portraits are stable with

respect to the metric defined in equation 4.9 [172]). In other words, it is easier to

detect changes in topological features than to describe those exact features from the

portraits.

On the theoretical side, studying phase transitions is key to understanding nonlin-

ear dynamical processes, and with respect to rhythmic coordination, we expect to see

some form of topological (homological) change in the original frequency and relative

phase dynamics if an actual transition has occurred. Here a phase transition refers to

a change of (literally) phase relation in one or more pairs of oscillatory processes, e.g.

a pair switching from dwelling at a relative phase to phase wrapping, to stay apart or

to form new phase relations. At such a transition, previously overlapping frequency

trajectories may bifurcate (at the end of a dwell), whereas the resulting branches ei-

ther stand alone, merge with other trajectories or merge back together. Topologically

(in a sufficiently large neighborhood near the transition), these three scenarios lead

to a lasting increase in the number of connected components (e.g. first transition

10s in Figure 4.9A), a transient reduction in the number of connected components

(by merging into a larger one; e.g. time block 27-29s in Figure 4.9A), or a transient

loop formation (e.g. time block 39-41s in Figure 4.1B) respectively. The latter two

are particularly interesting because the magnitude of the topological change is not

so much about the topological difference between the pattern before and after the

transition, but that the topology during the transition is highly nongeneric compared

to what happens before and after. As reflected in our results, these features indeed

stand out against the backgrounds (e.g. 30s in Figure 4.8D, and 40s Figure 4.8B).

In short, the current interpretation directly addresses dynamics-relevant topological

changes in the original time series, without interpreting the topological portraits as

an intermediate step.
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This does not mean however that we are uninterested in direct analyses and in-

terpretation of topological portraits. To the contrary, the motivation behind using

persistent landscapes is that they are conducive to further statistical analyses. But

first we need to know which statistics are relevant to the underlying dynamics. For

example, does the magnitude of change in connected components (average 0th per-

sistent landscape) truly reflect the scope of a phase transition (how local-global the

transition is, e.g. comparing the minor and major transitions in Figure 4.9)? If

we divide the analysis of topological recurrence by scale, will we be able to infer at

what scale a transition occurs? Or more generally, can we accurately classify the

type of phase transitions (see examples in the previous paragraph) by taking into

account all landscape functions (without averaging)? Answers to these questions are

highly desirable. To deliver valid answers, systematic testing is required on tran-

sitions whose classification we know a priori, e.g. simulated transitions based on

mathematical models (see [40] for a model developed based on the Human Firefly

experiment [35]). There have been successful applications of computational topology

in capturing known periodic behavior and topological phase transitions in theoret-

ical models of physical systems [184, 185]. As for models of biological systems, in

particular regarding multiagent metastable patterns (see Chapter 3), a systematic

classification and parametrization of all possible transitions is non-trivial in itself and

still in its early development. We therefore leave a model-based analyses to future

research.

To conclude, we proposed in this chapter a topology-based approach to under-

standing metastable coordination dynamics involving multiple agents. We demon-

strated by analysis of examples and theoretical discussions that such a method can

reveal structures in the dynamics in terms of transitions of various types. Further

developments using simulated time series are required to head toward a system-

atic method of classifying phase transitions in multiagent coordination dynamics,
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for which this chapter provides a prototype.
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CHAPTER 5

TOWARD AN UNDERSTANDING OF MULTISCALE

COORDINATIVE STRUCTURES

This dissertation includes a series of studies dedicated to the general question of how

multiscale coordinative structures in nature (Section 1.1) are formed and under which

laws of coordination. This question includes an empirical- and a theoretical-oriented

aspect: what kind of coupled dynamical systems reflect the dynamic laws underlying

multiscale coordinative structures in nature and what are the sufficient conditions for

a coupled dynamical system to actually produce a multiscale coordinative structure.

Separate treatments of these two aspects create dilemmas if such a law of coordination

is nonlinear (a trait of complex systems, e.g. [186–188]). It is generally difficult to

study the behavior of any high-dimensional nonlinear dynamical system globally and

systematically. This means that even if a system of equations describing a “true law

of multiscale coordinative structure” is right in front of you, you may never recognize

it if a sufficient amount of time has not been invested in the theoretical study of

its behavior. The flip side is that you may invest an indefinite amount of time

on a system of nonlinear equations that in principle cannot produce any multiscale

coordinative structure. By embracing both aspects, this dissertation contributes to

the cyclic scientific process of empirical-theoretical investigation that aims toward a

true understanding of multiscale coordinative structures.

Preexisting empirical and theoretical studies of rhythmic coordination often focus

on the type of behavior (as measured) that lacks either, if not both, of two impor-

tant aspects of multiscale coordinative structure: order with complexity and multiple

levels of description (see Chapter 1). To reveal both aspects in the same empirical
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setting, a new experimental paradigm was developed for probing coordination dynam-

ics in intermediate-sized ensembles of humans. The size of the ensemble allows the

coexistence of multiple levels of description. The accompanying experimental appa-

ratus permits versatile control of the boundary conditions of human interaction such

that regimes of complex coordination can be explored. Subsequently in the human

experiment based on this paradigm (Chapter 2, [35]), manipulation of the boundary

conditions (frequency diversity) affected coordination on multiple levels of description,

including relations between and within frequency groups, as well as dyads.

Based on this experiment, a scalable, coupled phase oscillator model (equation

3.1) was developed to capture key experimental observations on all observed levels

of description (Chapter 3). This new model unified two existing models of coor-

dination – the Kuramoto model for large-scale coordination (Section 1.2) and the

extended HKB model for dyadic coordination (Section 1.3) – essentially by adding

second order coupling from the extended HKB to the Kuramoto model, or conversely

adding scalability from the Kuramoto to the extended HKB model. We found that

the second order coupling is indispensable for capturing experimental observations

from Chapter 2, in particular, the coexistence of inphase and antiphase preference

in dyadic relations. Further mathematical analyses showed that this coexistence of

inphase and antiphase at the dyadic level reflected multistability endowed by second

order coupling. For the coordination of identical oscillators to be multistable, the ra-

tio between the second and first order coupling must exceed a critical value (Section

3.2.4). Beyond this critical value, any combination of inphase and antiphase relations

is a stable coordination pattern; below this critical value, only all-inphase coordina-

tion (synchronization) is stable, the regime where the Kuramoto model lives. For

this reason, the Kuramoto model cannot capture all key experimental observations.

The critical value demarcating the regimes of mono- to multi-stable coordination is

scale invariant. It is therefore identical to that of the HKB, which was also devised to
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capture the mono- to multi-stable (bi-stable) transition in human rhythmic coordina-

tion [27]. This is not just a formal connection between models, but more importantly

a connection between coordinative phenomena across scales obtainable through the

models. Practically, experimenters may estimate the parameters (natural frequency

and coupling strength as in, e.g., equation 3.5) that captures individual subjects’

coordinative behavior at a small scale and predict what occurs at a larger scale be-

tween many such individuals. If the prediction is not aligned with observations, the

difference between them would provide important information regarding what has

changed with scaling. More generally, it connects the behavioral complexity observed

in smaller systems to larger systems composed of them.

Similar to past studies of dyadic coordination (N=2, Section 1.3), the empiri-

cal data for multiagent coordination suggest two dynamical mechanisms for complex

coordinative behavior: multistability (as summarized above) and metastability (co-

ordination without phase-locking). Further theoretical study of the model (equation

3.3) in relevant parameter regimes reveals that a small addition of complexity at the

dyadic level becomes much more powerful at larger scales. For multistability, the

number of stable coordination patterns for coupled identical oscillators increases ex-

ponentially with scale. From the perspective of pattern formation, this means that

the system’s behavioral repertoire enlarges rapidly with size. On the other hand,

multistability is also associated with memory (or “mneme” [189]) in biological, espe-

cially, neural systems [190–196]. Thus one may also say that the system’s memory

capacity grows exponentially with its size. This is analogous to static random-access

memory in computers, where large memory capacity can be built from small bistable

circuits (flip-flops). This is not a feature of the Kuramoto model, which only has

one stable state (under a given coupling strength) regardless of scale. Hence, the

Kuramoto model is memoryless, analogous to an imaginary computer whose memory

is stored only in ones but no zeros. The analogy with computer memory, however,
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reveals a problem. Namely, this type of complexity is decomposable, i.e. a subsystem

has the same repertoire of coordination patterns regardless of whether it is isolated

from the rest of the system of not (though the size of the basin of attraction may

vary). Thus, a small-scale system does not gain emergent behavior by partaking in a

larger system, which is in conflict with our expectation from a multiscale coordinative

structure (Section 1.1). For a multiscale coordinative structure, at least with respect

to the number of stable states, the whole seems to be neither the sum nor the product

of its parts. The whole has to be different [140]. Multistability of the coordination

of identical components is not a sufficient mechanism for complexity in multiscale

coordinative structures.

When the components are diverse and the coupling sufficiently weak (Section B.1),

metastability is at work. Unlike dyadic metastable coordination whose topology is

unique, multiple purely metastable patterns (no phase-locking between any compo-

nents) can be created by simply adding a third agent (Section 3.2.6). In fact, we

conjecture that there are infinitely many purely metastable and topologically distinct

patterns formed by three oscillators. This complexity of the three is not decom-

posable. Due to the lack of phase-locking in purely metastable coordination, it is

associated with the incoherence regime of coupled phase oscillators, with finite-N

fluctuations (i.e. temporal oscillation of the Kuramoto order parameter for a finite

number of oscillators, see [12, 72, 197]). The fluctuations reflect intermittent dwells

at and escapes from preferable phase relations (the analysis of multistability provides

the number of dwells per revolution of the relative phase). Contrary to the common

assumption that this is a regime of disorder, numeric results demonstrate (Chapter

3) that ordered and complex sequences of spatial patterns can be produced under

metastable coordination (e.g. Figure 3.7, 3.8 and B.10; see also [33]). Metastability

therefore is a mechanism for ordered-yet-complex behaviors that are not decompos-

able – a good candidate mechanism for generating multiscale coordinative structures.
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Here “complexity” of a metastable pattern can be thought of as its topological

complexity (e.g. [173,198]) relative to purely phase-locked patterns (e.g. synchroniza-

tion), measured by a vector of winding numbers of its relative phase orbit. Numeric

results (Section 3.2.6 and B.9) further suggest that if a complex metastable pattern

is a concatenation of some simpler patterns in time, the topological complexity of

the complex pattern is the sum of the topological complexity of those simpler pat-

terns. Moreover, one can predictably find this complex pattern by varying a single

parameter (e.g. natural frequency of one oscillator, Section 3.2.6) between the values

that lead to the simpler patterns that constitute it. In future research, an analytical

proof of these results should be attempted. If successful, it would provide a mathe-

matical framework for systematic studies of multiagent metastability by investigating

the mapping from an oscillator system’s parameter space (natural frequencies and

coupling strength) to algebraic structures (e.g. vector spaces).

In the study of metastable patterns, geometric features (e.g. clustering of curves,

area of holes between curves) of frequency graphs (e.g. Figure 3.8) not only accu-

rately reflect the topology of corresponding relative phase orbits (i.e. topological

complexity of the metastable patterns) but also provide additional characterization

of the patterns (e.g. the period, the sequence of concatenation from simpler patterns;

see Figure B.10). As a result, high-dimensional coordination patterns can be stud-

ied geometrically as 2-dimensional graphs. A new method for analyzing such graphs

was introduced, combining tools from traditional nonlinear time series analysis and

computational algebraic topology, in particular, persistent homology. Persistent ho-

mology captures connected components and holes in these graphs at multiple scales

as algebraic structures. By studying the dynamics of such algebraic structures, the

method successfully captured important coordinated transitions in dynamic patterns

formed by many diverse agents, which eluded traditional, non-topological methods.

In future research, the method may be further improved and validated by honing
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against simulated data, thereby creating a reliable computational tool for analyzing

metastable patterns of multiagent coordination in simulated and empirical data.

One issue that has been touched upon but not fully explored in this dissertation

is the long time scale behavior observed in the human experiment [35], which may be

worth further empirical and theoretical investigation. In single-trial dynamics, there

was indication of frequency adaptation (see Section B.8), which has been observed

in human social coordination in dyads [154]. Statistically, the average level of dyadic

coordination drifts towards a moderate level over time (Section A.5). It may be

worth asking whether certain forms of adaptation in natural frequency or coupling

strength lead the system toward regimes of certain types of metastable coordination

(e.g. a certain level of topological complexity) and whether there is any benefit in

doing so (e.g. having many other patterns to switch to via small parameter changes).

These questions can be better addressed if the mathematical framework for multiagent

metastability initiated in this dissertation is fully developed in future studies.

From multiagent metastability to multiscale coordinative structures, the study of

adaptation or evolution of parameters (e.g. natural frequency and coupling strength)

may be an inevitable path. The formation of units or modules in complex systems

has well demonstrated evolutionary advantages [199–204]. The formation of such

modules at multiple levels of description suggests a separation of evolutionary time

scales (see [205]). To approach this problem from the perspective of coordination

dynamics, one first needs to associate modularity of the parameters (e.g. clustering

in frequency, modularity in network connectivity) with that of the dynamics. While

there is a long way ahead towards a true understanding of multiscale coordinative

structures, we must not lose our wonder about their “secrets” (Section 1.1).

I believe that the justification of art is the internal combustion it ignites
in the hearts of men and not its shallow, externalized, public manifesta-
tions. The purpose of art is not the release of a momentary ejection of
adrenalin but is, rather, the gradual, lifelong construction of a state of
wonder and serenity. – Glenn Gould [206]
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APPENDIX A

SUPPLEMENTARY INFORMATION FOR THE HUMAN

EXPERIMENT

A.1 PREPROCESSING OF RECORDED SIGNALS

In the current study, we characterize social coordination in terms of frequency and

phase relations. Here we detail how frequency and phase related variables were trans-

formed from raw signals (square waves consisting of zeros and ones, see Experimental

Setup). We define the inter-tap interval (ITI) as the time difference between the

onsets of two consecutive taps. Instantaneous Frequency (F) is the reciprocal of ITI,

interpolated linearly between taps in accord with the original sampling rate (250Hz).

We obtained Phase (θi) by first assigning the value 2π(n − 1) to the onset of the

nth tap of the ith individual, and then interpolating samples in between with a cubic

spline method. Further, we define relational variables Frequency Ratio (FRij) and

Relative Phase (φij) between individual i and j as

FRij =
min(Fi, Fj)

max(Fi, Fj)
(A.1)

and

φij = θi − θj (A.2)

respectively. To quantify the degree of phase coordination, we segment each time

series into consecutive 3s windows, and calculate the Phase-Locking Value (PLV )

within such windows.

PLV = 1− CV =
1

N

∣∣∣∣ N∑
n=1

eiφ[n]

∣∣∣∣ (A.3)

where CV is circular variance, and N is the total number of samples in a window (750

pts). PLV ranges from zero to one. A value of one indicates the maximal degree of

coordination, and a value of zero indicates no coordination.

99



A.2 MULTIVARIATE ANALYSIS OF VARIANCE (MANOVA)

To study how dyadic coordination within and between initial groups (denoted as

variable relation with two categories: within-group and between-group) changes as

diversity varies (i.e. between-group difference in frequency predispositions, δf =

0, 0.3, 0.6 Hz), we performed a 2× 3 (relation× δf) MANOVA to compare the mean

PLV in different conditions, using Type III Sums of Squares. Multiple comparisons

were performed using Tukey HSD (honest significant difference) tests.

A.3 LINEAR REGRESSIONS AND CRITICAL FREQUENCY IDEN-

TIFICATION

To study the macro organization of groups, we examined the relation between within-

group and between-group phase coordination, and how it changes as diversity (δf)

increases. Least Square method was used to obtain the regression line for each δf ,

PLV δf
between−group = βδf0 + βδf1 PLV δf

within−group + εδf (A.4)

The slope β1 = βδf1 is the relation between within- and between-group coordination,

an index of the degree of integration between two initial groups. If β1 = 1, there is only

one undifferentiated supergroup. 0 < β1 < 1 indicates that initial groups integrated

into a supergroup but there is remnant of the diversity (coordination with one group

increases the coordination with the other group but not as much as when there is no

diversity). β1 < 0 indicates that initial groups remain segregated (coordination with

one group decreases coordination with another group).

If there exists a diversity δf such that within-group coordination does not vary

with between-group coordination (degree of integration βδf=0
1 ), we call it a critical

diversity (δf ∗) – a separatrix between regimes of integration and segregation of two

initial groups. To obtain δf ∗, we regressed the degree of integration β1 against diver-
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sity δf ,

β1 = α0 + α1δf + ε (A.5)

and estimated where the regression line crosses β1 = 0,

δf ∗ := −α0

α1

(A.6)

A.4 DISTRIBUTIONAL COMPARISON

To verify how much the distribution of relational variables (FR, φ) in each condition

reflects genuine coordination, we constructed chance level distributions by random

permutations of all taps within each condition (i.e. taps produced following the same

metronome). A total of 10,000 random permutations were performed. For each

permutation, relational variables were computed following the same procedures as

that of the original data (see Section A.1) and a probability density function (PDF)

was computed for each variable using a 100-bin histogram. Given a significance level

of p = 0.0005 for each bin (based on Bonferroni correction for p̂ = 0.05 for the entire

distribution), we computed the confidence interval around chance level distribution

(two-tailed) as between (100−50p) percentile and 50p percentile of the 10,000 random

distributions for each bin. The real distribution is significantly different from chance

at a specific value of FR or φ, if the probability density of this value is outside the

confidence interval (seen as light-colored bands in main text Figs).
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A.5 LONG TIME-SCALE BEHAVIOR IN HUMAN COORDINATION

Figure A.1: Multiagent coordination exhibits slow dynamics. In the experimental data,
between agents of low initial frequency difference (i.e. within-group, A; between-group for
δf = 0 Hz, B blue), initially high phase locking tended to decrease over time. In contrast,
under moderate to high initial frequency difference (B, red, yellow), initially weak coordi-
nation slowly strengthened. Solid and dashed lines are, respectively, means and standard
errors of phase-locking value over all trials of a specific diversity condition (δf) in fixed time
windows.

Considering the evolution of phase-locking during interaction, we found that a high

degree of phase-locking was unsustainable, which can be seen in Figure A.1 as the

decaying phase-locking value overtime for those whose initial phase-locking value is

above 0.5 (i.e. within-group coordination in all three intergroup difference conditions,

see A, and between-group coordination when there is no intergroup difference, see B,

blue curve). In contrast, low levels of phase-locking (below 0.5, stemming from large

initial frequency difference) tend to increase over time (Figure A.1B, red, yellow

curves). The finding suggests that when dyadic interactions are embedded in a larger

ensemble, they tend to persist as moderate phase coordination rather than the very

strong or very weak ones.
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APPENDIX B

SUPPLEMENTARY INFORMATION FOR THE MODEL

B.1 CHOOSING THE APPROPRIATE COUPLING STRENGTH

What we want to see is how the present model behaves as we manipulate the diversity

of natural frequency ωi’s just as we did to human subjects. However, there remain

two unknown parameters to be taken care of, namely the coupling stength a and b in

equation (3.3). Before systematically finding the appropriate coupling strength, we

want to first show qualitatively how it affects the dynamics.

Three simulated trials with increasing coupling strength are shown in Figure B.1

from A to C, whereas the initial phases and natural frequencies are the same across

trials (warm-color group centered around fA = 1.2 Hz, cold-color group fB = 1.8

Hz, corresponding to δf = 0.6 Hz). When the coupling is weak (a = b = 0.1,

Figure B.1A), oscillators are well-segregated into two frequency groups. Within each

frequency group, members intermittently converge (marked by black triangles) then

diverge, reflecting metastability at a group level (collective dwells). For intermediate

coupling (a = b = 0.2, Figure B.1B), oscillators within each group are locked together,

interacting strongly as a whole with the other frequency group (seen as the oscillation

of frequency), so that the ensemble (N = 8) behaves like a dyad (N = 2). Finally,

for strong coupling (a = b = 0.4, Figure B.1C), everyone converges to a single steady

frequency. We see a progression from group-level segregation to integration from (A)

to (C), indicating the important role of coupling strength in determining intergroup

relation. Qualitatively, the model’s behavior under weak coupling (Figure B.1A) is

closer to human behavior (Figure 3.2C) than that of stronger coupling. Next we take

a more quantitative look.
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Figure B.1: The effect of diversity and coupling strength on the level of integration between
groups. (A-C) show frequency dynamics of three simulated trials, with increasing coupling
strength (a = b = 0.1, 0.2, 0.4 respectively) and all other parameters identical (the warm-
color group’s natural frequencies evenly spread in the interval [fA − 0.08Hz, fA + 0.08Hz]
with fA = 1.2 Hz), similarly for the cold-color group in [fB − 0.08Hz, fB + 0.08Hz] with
fB = 1.8 Hz; initial phases are random across oscillators but the same across trials). When
the coupling is too strong (C), all oscillators lock to the same steady frequency. When the
coupling is moderate (B), oscillators split into two frequency groups, phase-locked within
themselves, interacting metastably with each other (dwell when trajectories are close, escape
when trajectories are far apart). When the coupling is weak (A), intragroup coordination
also becomes metastable seen as episodes of convergence (black triangles) and divergence.
(D) shows the level of intergroup integration quantitatively (β1, color of each pixel) for each
combination of frequency diversity δf and coupling strength a = b. White curve indicates
the critical boundary between segregation (blue area on the left, β1 < 0) and integration
(red and yellow area on the right, β1 > 0). Within the regime of integration, the yellow area
indicates complete integration (β1 ≈ 1) where there is a high level of phase locking, and
the red area indicates partial integration (0 < β1 � 1) suggesting metastability. Dashed
gray lines label δf ’s that appeared in the human experiment. Solid gray line labels the
empirically estimated critical diversity.

To quantify the joint effect of frequency diversity (δf) and coupling strength

(a = b for simplicity) on integration and segregation between two frequency groups,

we calculated the level of intergroup integration (β1) for simulated trials using the

same method as for the human experiment (see Phase-locking value and level of

integration in Materials and Methods in the main text). For each parameter pair
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(δf, a) with a = b, we simulated 200 trials. In each simulated trial, two frequency

groups A and B each consists of four oscillators (ϕ1, · · · , ϕ4 in group A, ϕ5, · · · , ϕ8

in group B). The natural frequency of oscillators in group A (i.e. ω1, · · · , ω4, divided

by 2π) was drawn from a distribution P (fA) centered around fA (corresponds to the

metronome frequency for the group in the human experiment), and P (fB) for groupB.

The difference between two groups δf = |fA−fB| corresponds to the level of diversity

in the human experiment. Here the probability density function P (f), which defines

frequency dispersion within each group, was obtained by a nonparametric estimation

of the empirical distribution (see Materials and Methods in the main text).

The level of integration for simulated trials is shown in Figure B.1D as the color

of each pixel (diversity δf as y-coordinate; coupling strength a = b as x-coordinate).

Three regimes are apparent: the highly integrated (yellow, β1 ≈ 1), the partially

integrated (red, 0 < β1 � 1), and the segregated (blue, β1 < 0). Between the red and

blue area is the critical boundary (white solid line, β1 = 0), separating the regimes

of integration and segregation. With any fixed coupling strength, for the critical

boundary to fall between δf = 0.3 Hz and δf = 0.6 Hz as in the human experiment,

the coupling strength has to be weak (for δf = 0.6 Hz, β1 < 0 only when a = b < 0.15)

but not too weak (for δf = 0.3 Hz, β1 > 0 only when a = b > 0.05). Without risking

overfitting, we simply choose the coupling strength a = b = 0.105, for which the level

of integration is the closest to experimental observation for δf = 0.3 Hz (β1 = 0.31).

B.2 EMPIRICAL DISTRIBUTION OF TAPPING FREQUENCY

AROUND METRONOME FREQUENCY

In the “Human Firefly” experiment [35], subjects’ tapping frequency during the tran-

sient between pacing and interaction (a proxy to “natural frequency”; see Materials

and Methods in main text) dispersed around the metronome frequencies. The dis-

tribution of this deviation from metronome frequencies is shown in Figure B.2 (blue
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histogram). Most of the time, subjects were very close to the metronome frequency

(peak around zero). We can use a normal distribution N(µ, σ) to capture this peak

(Figure B.2 yellow line) where parameters µ = 0 and σ = 0.0986 (Hz) were estimated

using the median and 10th percentile of the empirical distribution. We can see a dif-

ference between the empirical distribution and the normal distribution - the normal

distribution (yellow line) does not capture the fat-tails of the empirical distribution

(blue bars exceed yellow line on its shoulders). These “mutant fireflies” making up

the fat-tails are not to be dismissed as outliers, because they contribute to the behav-

ior of others in the ensemble. To better represent the empirical distribution, we used

Kernel Density Estimation (with a normal kernel) as described in section Estimating

the distribution of natural frequencies of Materials and Methods in the main text, and

the result of estimation is shown as the red line in Figure B.2 (named kernel distribu-

tion). The kernel distribution better captures the tails of the empirical distribution

and was used to generate natural frequencies of oscillators in the simulations.

Figure B.2: Distribution of human movement frequency around metronome frequencies
and its estimation.
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B.3 EXAMPLES OF DYNAMICS WITH INTERGROUP COUPLING

REMOVED

By removing intergroup coupling, we obtain a modification of equation (3.3)

ϕ̇i = ωi − a
N∑
j=1

eij sinφij − b
N∑
j=1

eij sin 2φij (B.1)

where eij = 1 if i, j ∈ {1, 2, 3, 4} or i, j ∈ {5, 6, 7, 8}, eij = 0 otherwise, for N = 8.

The resulting dynamics (with all other parameters the same as examples in Figure

3.4A-C in the main text) are given in Figure B.3. Within each frequency group (one

group in cold colors, one group in warm colors), we see the same metastable dynam-

ics being repeated regardless of intergroup difference (df = 0, 0.3, 0.6 Hz for Figure

B.3A, B, C respectively). These trials, without intergroup coupling, provide a base-

line dynamics for comparison with Figure 3.4A-C, revealing the effect of intergroup

influence. It turns out that for a given intragroup coupling, intragroup metastability

comes from intragroup dispersion of natural frequencies. Metastability vanishes when

two metastable groups have no intergroup difference (Figure 3.4A). In other words,

without intergroup difference (δf = 0), there are more oscillators within the same

range of frequency, which cooperatively increases intragroup coordination. If we re-

move this intragroup dispersion of natural frequency (along with the metastability),

we can no longer reproduce the experimental observation that intragroup coordination

was weakened and altered by intergroup differences (see Section B.4 for a statistical

analysis).
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Figure B.3: Intragroup dynamics without intergroup coupling, for intergroup difference
δf = 0 (A), δf = 0.3 (B), and δf = 0.6 Hz (C).

With intergroup coupling, the time scale of metastability is modified by δf , as

shown in Figure 3.4BC where the interval between two episodes of convergence (black

triangles) is shorter for δf = 0.3 Hz (B) than for δf = 0.6 Hz (C). In Figure B.4A,

this is also visualized as the dynamics of phase-locking value (PLV) within groups

(average PLV of all intragroup dyads in 3-s windows). When oscillators within groups

converge, PLV is close to 1, and the interval between two consecutive peaks in a PLV

trajectory reflects the time scale of the metastable coordination. Without influence

from the other group, the time scales are exactly the same (trajectories exactly on

top of each other in Figure B.4B). With influence from the other group, the time scale

depends on the level of intergroup difference (inter-peak intervals for δf = 0.3 Hz was

much shorter than that of δf = 0.6 Hz in Figure B.4A). Perhaps, we can consider

δf = 0 Hz (i.e. lost of metastability, B.4A blue line) as the special case where the

inter-convergence interval is zero.
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Figure B.4: Dynamics of intragroup phase-locking value (PLV) with (A) and without (B)
intergroup coupling for different levels of frequency diversity δf (color coded, see legends).

It is also interesting to notice that for δf = 0.6 Hz, the metastable time-scale of the

trial with intergroup coupling (Figure B.4A yellow line) is very similar to that of the

trial without intergroup coupling (Figure B.4B yellow line). This may be connected

to the fact that δf = 0.6 Hz (given a = b = 0.105) is in the regime of intergroup

segregation. It is perhaps a hypothesis worth further investigation that the level of

intergroup integration (as measured by β1, see main text) reflects how the time scale

of intragroup metastability was affected by intergroup difference. Here our discussion

of these examples is only to provide an intuitive understanding of the dynamics.

B.4 EFFECT OF REDUCED INTRAGROUP VARIABILITY IN NAT-

URAL FREQUENCY

Recall that the reduction in intragroup coordination shown in Figure 3.3D (left)

was based on simulations with nontrivial dispersion in natural frequency within each

group, reflecting the natural variability carried into the experiment by human sub-

jects. What if we remove that intragroup dispersion? As shown in Figure B.5A

(left three bars), intragroup coordination becomes very close to the maximal level

(phase-locking value close to 1) for all diversity conditions (MANOVA interaction
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effect F (2, 19194) = 50152, p < 0.001); we no longer see the large drop in intragroup

coordination as seen in Figure 3.3BD. Even if we break the symmetry in coupling

strength (use equation (3.1) with random coefficients, instead of uniform coupling in

equation (3.3); see Random coupling for details), the phenomenon is not recovered

(Figure B.5B very similar to A; MANOVA interaction effect F (2, 19194) = 59678,

p < 0.001). By studying the model’s behavior, we found that the reduction in intra-

group coordination due to intergroup difference, as observed in the human experiment,

mainly depends on asymmetry in natural frequency rather than coupling strength.

Figure B.5: Intragroup and intergroup phase-locking by different levels of diversity δf for
simulated data with identical natural frequency within groups. (A) shows the results of
simulations with uniform coupling, and (B) non-uniform coupling (a’s and b’s are randomly
distributed in the interval [0, 0.2] see text for details).

B.5 RANDOM COUPLING

To study the effect of symmetry breaking in coupling strength, we generated random

coefficients for equation (3.1), following a uniform distribution on the interval [0, amax],

P (a) =
1

amax
. (B.2)

We simulated 200 trials for each parameter pair (δf = 0.3Hz, amax) for amax ∈ [0, 1]

(discretized into intervals of length 0.01) with initial phases randomly distributed
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from 0 to π and natural frequencies following the empirical distribution from the

human experiment (see Empirical distribution of tapping frequency

around metronome frequency ). We then find the value of amax = 0.2, which produces

the level of intergroup integration (β1) closest to the experimental value (0.31). Using

this fitted amax, we simulated 200 trials with no intragroup dispersion in natural

frequency, which were used to produce results in Figure B.5B.

B.6 INTERGROUP RELATION

WITHOUT SECOND ORDER COUPLING

To examine whether the second order coupling term (i.e. b
∑

sin 2φij) in equation

(3.3) is necessary for reproducing key experimental results, we let b = 0 and followed

the exact same analysis as for the case of b 6= 0. The results are shown in Figure B.6

(its b 6= 0 counterpart is Figure B.1D), and Figure B.7AB (its b 6= 0 counterpart is

Figure 3.3CD).

Figure B.6 shows the organization of the parameter space δf × a in terms of the

level of integration between groups (β1, see definition in main text). Similar to Figure

B.1D (for b 6= 0), the space consists of three regions - complete integration (β1 ≈ 1,

yellow), partial integration (β1 � 1, red), and segregation (β1 < 0, blue) - arranged

from upper right to lower left. Figure B.6 is approximately a scaled version of Figure

B.1D along a.
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Figure B.6: Level of integration between groups by δf and a, with b = 0. See Figure B.1D
for interpretation.

We estimated the coupling strength to be a = 0.154, where the corresponding

level of integration for δf = 0.3 Hz is the closest to the empirical value (up to 10−3

precision for a; for a = 0.154, β1(0.3Hz) = 0.29, the empirical value is 0.31). The

corresponding relations between intragroup and intergroup coordination is shown in

Figure B.7A and average intra/intergroup coordination in Figure B.7B for different

levels of δf .

In Figure B.7A, each dot represents a particular trial with its x-coordinate in-

dicating the average intragroup coordination (measured by phase-locking value, see

Materials and Methods in main text) and y-coordinate the average intergroup coordi-

nation, whereas the color indicates the diversity δf . Similar to the human experiment

and the case of b 6= 0, more intragroup coordination is associated with more inter-

group coordination (i.e. integration) for δf = 0 and 0.3 Hz (blue, red regression lines

with positive slopes), and less intergroup coordination (i.e. segregation) for δf = 0.6

Hz (yellow regression line with negative slope). Two differences are (1) the β1 for
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δf = 0.6 Hz is not significantly different from zero (p > 0.05; see main text for more

statistics), where as the counterpart in the human data and the case of b 6= 0 are

(p < 0.05); (2) in the human data and the case of b 6= 0, three regression lines inter-

sect at almost the same point (see Figure 3.3A, C), which is not the case for b = 0

(Figure B.7A).

Figure B.7: Intragroup, intergroup coordination and the relationship between them for
a = 0.154 and b = 0. Here the level of coordination is measured by phase-locking value (see
main text for definitions). (A) shows the relationship between intragroup (x-coordinate
of each dot) and intergroup coordination (y-coordinate of each dot) for different levels
of diversity (color code). The solid lines are corresponding regression lines whose slope
quantifies the level of integration between two frequency groups. (B) shows the average
intragroup (left three bars) and intergroup coordination (right three bars) for different
levels of diversity (color code).

In Figure B.7B, we show the average level of intragroup and intergroup coordina-

tion (again, in terms of phase-locking values). Intragroup coordination is reduced by

the presence of intergroup difference (red, yellow bars on the left significantly shorter

than blue bar). Intergroup coordination is more dramatically reduced by intergroup

difference. Overall, these results resemble the human data and the case of b 6= 0.
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B.7 THE DYNAMICS OF RELATIVE PHASES

AND ITS LINEAR STABILITY ANALYSIS

From the absolute phase dynamics equation (3.3), we can derive relative phase dy-

namics between N oscillators

φ̇i =δωi − a sinφi − b sin 2φi

− a
N−1∑
j=1

[
sinφj + sin(φi − φj)

]
− b

N−1∑
j=1

[
sin 2φj + sin 2(φi − φj)

]
(B.3)

where φi := φ1 i+1 = ϕ1−ϕi+1 is the relative phase between the 1st and the (i+ 1)th

oscillator (dot is the time derivative), and δωi := ω1 − ωi+1 difference in natural

frequency between them. Equation (B.3) is put into the present form to show its

similarity (first row) and difference (second row) with the extended HKB (equation

3.2). In particular, the second row in equation (B.3) shows why dyadic relations

embedded in a larger group do not entirely behave like isolated dyads as concluded

from the human experiment [35]. Moreover, this system per se can behave like a

system of coupled oscillators under metastable coordination (see Section 3.2.6).

Below we show the linear stability analysis of equation (B.3) near a fixed point

where oscillators are either inphase or antiphase to each other (see [40] for a more

concise and formal version based on absolute phases).

We first scale the dynamics such that (with another abuse of notation) φ̇i =
dφi
dτ

where τ = at, and have

φ̇i =δωi/a− sinφi − b/a sin 2φi

−
N−1∑
j=1

[
sinφj + sin(φi − φj)

]
− b/a

N−1∑
j=1

[
sin 2φj + sin 2(φi − φj)

]
.

We only consider the simple case δω1 = · · · = δωN−1 = 0 (identical oscillators),
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and define κ := 2b/a,

φ̇i =− sinφi − κ/2 sin 2φi

−
N−1∑
j=1

[
sinφj + sin(φi − φj)

]
− κ/2

N−1∑
j=1

[
sin 2φj + sin 2(φi − φj)

]
with Jacobian matrix whose elements are

Jik =
∂fi
∂φk

=


i = k : −2 cosφk − 2κ cos 2φk −

∑N−1
j=1,j 6=k

[
cos(φk − φj) + κ cos 2(φk − φj)

]
i 6= k : − cosφk + cos(φi − φk)− κ cos 2φk + κ cos 2(φi − φk)

.

We are only concerned with fixed points whose components are either inphase or

antiphase. If there is at least one antiphase, the fixed point reflects a configuration of

two clusters that are inphase within themselves, but antiphase between each other.

Without loss of generality, we let n+ be the size of the larger or equal-sized cluster,

and n− the smaller or equal-sized cluster, i.e. n+ ≥ n− > 0 and n+ + n− = N .

We name the oscillators in the first cluster ϕ1, · · · , ϕn+ , whose relations are decribed

by relative phases φ1, · · · , φn+−1; and we name the oscillators in the second cluster

ϕn++1, · · · , ϕN , whose relations to the first cluster are φn+ , · · · , φN−1. In other words,

we want to evaluate the Jacobian at fixed points Φ = (φ1, · · · , φN−1) where the first

(n+ − 1) relative phases φ1 = · · · = φn+−1 = 0 and the last n− relative phases

φn+ = · · · = φN−1 = π, with n+ ≥ n− = N − n+.
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Jik|Φ =



i = k : − cosφk

(
2 +

∑N−1
j=1,j 6=k cosφj

)
− κN

=


k < n+ : −(2 + n+ − 2− n−)− κN = n− − n+ − κN

k ≥ n+ :
[
2 + (n+ − 1)− (n− − 1)

]
− κN = 2 + n+ − n− − κN

i 6= k : cosφk(cosφi − 1)

=



i < n+, k < n+ : 0

i < n+, k ≥ n+ : 0

i ≥ n+, k < n+ : −2

i ≥ n+, k ≥ n+ : 2

.

We can see that the Jacobian evaluated at our fixed point is a block-triangular matrix

J =

αI(n+−1)×(n+−1) 0(n+−1)×n−

−2n−×(n+−1) 2n−×n− + βIn−×n−

 (B.4)

where α = n− − n+ − κN and β = n+ − n− − κN .

Now we find the eigenvalues

∣∣∣J− λI

∣∣∣ =

∣∣∣∣∣∣(α− λ)I(n+−1)×(n+−1) 0(n+−1)×n−

−2n−×(n+−1) 2n−×n− + (β − λ)In−×n−

∣∣∣∣∣∣ (B.5)

=
∣∣∣(α− λ)I(n+−1)×(n+−1)

∣∣∣ ∣∣∣2n−×n− + (β − λ)In−×n−

∣∣∣ = 0. (B.6)

The eigenvalues of 2n−×n− can be calculated through discrete Fourier transform. Thus

we have

λ1 = · · · = λn+−1 = α (B.7)

λn+ = 2n− + β (B.8)

λn++1 = · · · = λN−1 = β. (B.9)
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Because of n+ ≥ n− > 0, we have α < β. This makes λn+ the largest eigenvalue. Thus

for the antiphase-containing fixed points to be stable, we need 2n−+β = N(1−κ) < 0,

which implies κ > 1. Since we have repeated eigenvalues and J generally not a

diagonal matrix, this is a degenerate fixed point but nevertheless asymptotically stable

for κ > 1.

There is of course an all-inphase fixed point (i.e. n+ = N, n− = 0), for which all

eigenvalues λ1 = · · · = λN−1 = α. In this case, α = −(1 + κ)N , which is always

negative (in the present analysis, we assume a > 0, b ≥ 0 thus κ ≥ 0), i.e. the

all-inphase fixed point is always stable.

B.8 ADDITIONAL TRIADIC DYNAMICS

Here we provide in Figure B.8 two additional variations of the simulated triadic

dynamics shown in Figure 3.5B. Figure B.8A shows what happens when all three os-

cillators have the identical coupling style, i.e. a1 = a3 = a4 and b1 = b3 = b4 (keeping

the same mean coupling strength as Figure 3.5B and C). With the symmetry com-

pleted restored (in contrast to Figure 3.5C where only the symmetry between agent

3 and 4 is restored), not only the “bumps” in φ34 are gone but also the metastability

altogether (at least at the observable time scale). This further illustrates the role of

symmetry breaking in understanding the single-trial dynamics.
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Figure B.8: Simulated triadic coordination as a pair of relative phases, with (A) a1 =
a3 = a4 = 0.4033 and (B) varying natural frequency ω3.

Figure B.8B shows what happens when agent 3’s natural frequency is not constant.

A main clue suggesting a non-constant natural frequency is the increasing size of

“bumps” in φ34 observed in the human behavior (see Figure 3.5A, the bump in yellow

line at 15s was smaller than the one at 25s, and even smaller than the one at 37s)

which was accompanied by growing length of the dwells in φ13 (red trajectory in

Figure 3.5A has three periods of flattening, each one longer than the previous one).

This could simply mean that agent 3’s “natural frequency” was moving towards agent

1’s and away from agent 4’s. In the model, the natural frequencies of agent 1 and

4 are 1.57 and 1.45 Hz respectively. We simply let ω3 increase linearly from 1.2 Hz

to 1.7 Hz, instead of being constant (i.e. 1.375 Hz for Figure 3.5BC and B.8A), over

the course of the trial. The resulted dynamics is shown in Figure B.8B. We see the

dwells of φ13 (red line flattening around 7, 17 and 32s) are getting longer over time

as the bumps in φ34 (yellow line) grow (the last bump grows out of itself at 37s and

leaves inphase). In fact, at the end of the last dwell (around 37s) φ13 is no longer

metastable in the original sense but begins to oscillate around inphase φ = 0, whereas
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φ34 takes its place at that time and becomes metastable (i.e. after 37s yellow line

starts wrapping).

Gradually increasing natural frequency of agent 3 (ω3) creates two subtle effects

in addition to the increasing bump size. The first has already been hinted at that a

gradual change of parameter can cause φ34 to suddenly leave inphase (∼ 37s yellow

line in Figure B.8B). In the human trial (Figure 3.5A), φ34 had also, after the third

bump, left inphase (37s). The difference is that the humans left for antiphase, instead

of becoming metastable as for our simple model assuming linearly increasing natural

frequency. This suggests that there was, unsurprisingly, more interesting adaptation

going on in human movement frequency than just a linear ramping. Another subtle

effect is of the same flavor but is concerned with what happens before φ34 began

to dwell at inphase. In the human trial, φ34 decreased for almost one cycle before

it stopped at inphase (0-10s yellow line in Figure 3.5A). This is not the case with

constant frequency (Figure 3.5B, yellow line, φ34 immediately increases to inphase

after the beginning of the trial), but it is the case with varying frequency (Figure

B.8B, yellow line, 0-5s). All these show, by a very simple example, how gradual

adaptation in natural frequency may cause sudden changes in coordination patterns.

B.9 ADDITIONAL COMPARISONS REGARDING

TRIADIC METASTABLE PATTERNS

Here we show a few more examples of triadic metastability (Figure B.9 and B.10)

supplementing Figure 3.6 and 3.7 in Chapter 3. Figure B.9 A1-3 shows that the

topology of the relative phase orbit does not change in a neighborhood near λ = 0.5

([0.49, 0.51]), i.e. remains of type (1, 1) as in Figure 3.7 C1-3. It means that the

topology shown in Figure B.9 A2-3 and Figure 3.7 C2-3 is structurally stable with

respect to λ. This is not the case for Figure 3.6 A2-3. As for any arbitrarily small

neighborhood of λ = 0.5, there exist irrational numbers which leads to quasiperiodic
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orbits, i.e. not of type (1, 1). The structural stability of orbits in Figure 3.7 C2-3 is

due to the presence of coupling.

Figure B.9: Additional examples of simulated triadic metastability. (A1) and (B1) show
the frequency dynamics of three oscillators whose natural frequencies are 0 (red), λ (black)
and 1 (blue) Hz, interacting with each other under the coupling strength a = b (values
shown in A1, B1). The corresponding periodic orbits of relative phases are shown in (A2-3)
and (B2-3) respectively, both of the same type (1, 1).

In comparison to Figure 3.7 A1-3, Figure B.9 B1-3 shows how reducing coupling

strength affects the regimes of different metastable patterns. λ = 0.52 belongs to the

regime of type (0, 1) under the coupling a = b = 1 (Figure 3.7 A2-3) but becomes

part of the regime of type (1, 1) when the coupling is weakened a = b = 0.8 (Figure

B.9 B2-3). This indicates a reduction in the measure of the regime of type (0, 1) and

a increase in that of type (1, 1).
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Figure B.10: Sequence production in triadic metastable coordination. Three more values
of λ are added here as an extension to Figure 3.7, where all other parameters are the same.
Winding numbers of each pattern is shown in the upper right corner of A1-C1, which is
measured by the amount of change in φ1−λ and φλ−0 (divided by 2π) in each cycle.

We show three additional examples of triadic metastable patterns of type (1, 3),

(1, 4), (1, 5) (Figure B.10 C1-3, B1-3, A1-3 respectively) found recursively between

patterns in Figure 3.7 A1-3 and B1-3 of type (0, 1) and (1, 2). One can clearly see the

composition of patterns in the sum of winding numbers, e.g. (1, 3) = (0, 1) + (1, 2)

in the frequency dynamics (C1), which amounts to adding one cycle from Figure 3.7

A1 to Figure 3.7 B1. In fact, from Figure B.10 C1 to A1, we see a primitive kind of

sequence production by adding repeatedly the same cycle of type (0, 1) in front. The

same information is not as clear in the relative phase orbits in Figure B.10 A2-C2

and A3-C3 (except under extreme magnification, not shown), because φ1−λ changes
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unintelligibly slowly for the first part of each cycle (seen as overlapping blue and black

curves in A1-C1). As a result, the orbit wraps very close to itself around the meridian

circle.
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tern formation process. In Jeannerod, M. (ed.) Attention and Performance
13: Motor Representation and Control, vol. 45, 139–169 (Lawrence Erlbaum
Associates, Inc, Hillsdale, NJ, US, 1990).

[14] Haken, H. Cooperative phenomena in systems far from thermal equilibrium
and in nonphysical systems. Reviews of Modern Physics 47, 67–121 (1975).

123



[15] Haken, H. Advanced Synergetics: Instability Hierarchies of Self-Organizing Sys-
tems and Devices (Springer-Verlag Berlin Heidelberg, 1983).

[16] Haken, H. Synergetics: Introduction and Advanced Topics (Springer Berlin
Heidelberg, Berlin, Heidelberg, 2004).

[17] Haken, H. The Science of Structure: Synergetics (Van Nostrand Reinhold, New
York, NY, 1984).

[18] Winfree, A. T. vol. 12 of Interdisciplinary Applied Mathematics (Springer New
York, New York, NY, 2001).

[19] Strogatz, S. H. & Stewart, I. Coupled oscillators and biological synchronization.
Scientific American 269, 102–109 (1993).

[20] Okuda, K. Variety and generality of clustering in globally coupled oscillators.
Physica D: Nonlinear Phenomena 63, 424–436 (1993).

[21] Komarov, M. & Pikovsky, A. Multiplicity of singular synchronous states in the
Kuramoto model of coupled oscillators. Physical Review Letters 111, 204101
(2013).

[22] Komarov, M. & Pikovsky, A. The Kuramoto model of coupled oscillators with
a bi-harmonic coupling function. Physica D: Nonlinear Phenomena 289, 18–31
(2014).

[23] Li, K., Ma, S., Li, H. & Yang, J. Transition to synchronization in a Kuramoto
model with the first- and second-order interaction terms. Physical Review E
89, 032917 (2014).

[24] Von Holst, E. On the nature of order in the central nervous system. In The
Collected Papers of Erich von Holst Vol. 1, The Behavioral Physiology of Animal
and Man, 3–32 (University of Miami Press, Coral Gables, FL., 1973).

[25] Golubitsky, M., Stewart, I., Buono, P.-L. L. & Collins, J. J. Symmetry in
locomotor central pattern generators and animal gaits. Nature 401, 693–695
(1999).

[26] Grillner, S. Control of locomotion in bipeds, tetrapods, and fish. In Pollock,
D. M. (ed.) Comprehensive Physiology (John Wiley & Sons, Inc., Hoboken, NJ,
USA, 2011).

[27] Haken, H., Kelso, J. A. S. & Bunz, H. A theoretical model of phase transitions
in human hand movements. Biological Cybernetics 51, 347–356 (1985).

[28] Kelso, J. A. S. Dynamic Patterns: The Self-Organization of Brain and Behavior
(The MIT Press, Cambridge, Massachusetts, 1995).

124



[29] Kelso, J. A. S. Phase transitions and critical behaviour in human bimanual co-
ordination. American Journal of Physiology: Regulatory, Integrative and Com-
parative Physiology 246, R1000–1004 (1984).

[30] Jeka, J. J. & Kelso, J. A. S. Manipulating symmetry in the coordination dynam-
ics of human movement. Journal of experimental psychology. Human perception
and performance 21, 360–374 (1995).

[31] Tognoli, E. & Kelso, J. A. S. Brain coordination dynamics: true and false
faces of phase synchrony and metastability. Progress in Neurobiology 87, 31–40
(2009).

[32] Kelso, J. A. S. Multistability and metastability: understanding dynamic co-
ordination in the brain. Philosophical Transactions of the Royal Society B:
Biological Sciences 367, 906–918 (2012).

[33] Tognoli, E. & Kelso, J. A. S. The metastable brain. Neuron 81, 35–48 (2014).

[34] Tognoli, E., Zhang, M. & Kelso, J. A. S. On the nature of coordination in na-
ture. In Advances in Cognitive Neurodynamics (VI), 375–382 (Springer Nature
Singapore, 2018).

[35] Zhang, M., Kelso, J. A. S. & Tognoli, E. Critical diversity: Divided or united
states of social coordination. PLOS ONE 13, e0193843 (2018).

[36] Bressler, S. L. & Kelso, J. A. S. Cortical coordination dynamics and cognition.
Trends in Cognitive Sciences 5, 26–36 (2001).

[37] Kelso, J. A. S. & Engstrom, D. A. The Complementary Nature (The MIT Press,
Cambridge, Massachusetts, 2006).
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[73] Néda, Z., Ravasz, E., Vicsek, T., Brechet, Y. & Barabási, A.-L. L. Physics
of the rhythmic applause. Physical Review E - Statistical Physics, Plasmas,
Fluids, and Related Interdisciplinary Topics 61, 6987–6992 (2000).

[74] Mirollo, R. E. & Strogatz, S. H. Synchronization of pulse-coupled biological
oscillators. SIAM Journal on Applied Mathematics 50, 1645–1662 (1990).

[75] Richardson, M. J., Garcia, R. L., Frank, T. D., Gergor, M. & Marsh, K. L.
Measuring group synchrony: a cluster-phase method for analyzing multivariate
movement time-series. Frontiers in Physiology 3, 1–10 (2012).

[76] Fuchs, A. Nonlinear Dynamics in Complex Systems (Springer Berlin Heidel-
berg, Berlin, Heidelberg, 2013).

[77] Kelso, J. A. S. The dynamic brain in action: coordinative structures, criticality,
and coordination dynamics. In Plenz, D. & Niebur, E. (eds.) Criticality in
Neural Systems, chap. 4, 67–104 (2014).

[78] de Guzman, G. C. & Kelso, J. A. S. Multifrequency behavioral patterns and
the phase attractive circle map. Biological Cybernetics 64, 485–495 (1991).

[79] Kelso, J. A. S. & de Guzman, G. C. Order in time: how the cooperation
between the hands informs the design of the brain. In Haken, H. (ed.) Neural and
Synergetic Computers, 180–196 (Springer Berlin Heidelberg, Berlin, Heidelberg,
1988).

[80] Strogatz, S. H. Sync: The Emerging Science of Spontaneous Order (Hyperion,
New York, New York, USA, 2003), 1st edn.

[81] Buck, J. Synchronous rhythmic flashing of fireflies. II. The Quarterly Review
of Biology 63, 265–289 (1988).
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