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ABSTRACT

Author: Mengsen Zhang
Title: The Coordination Dynamics of Multiple Agents
Institution: Florida Atlantic University

Dissertation Co-Advisors: Dr. Emmanuelle Tognoli
Dr. J. A. Scott Kelso

Degree: Doctor of Philosophy
Year: 2018

A fundamental question in Complexity Science is how numerous dynamic pro-
cesses coordinate with each other on multiple levels of description to form a complex
whole — a multiscale coordinative structure (e.g. a community of interacting people,
organs, cells, molecules etc.). This dissertation includes a series of empirical, theo-
retical and methodological studies of rhythmic coordination between multiple agents
to uncover dynamic principles underlying multiscale coordinative structures. First,
a new experimental paradigm was developed for studying coordination at multiple
levels of description in intermediate-sized (N = 8) ensembles of humans. Based
on this paradigm, coordination dynamics in 15 ensembles was examined experimen-
tally, where the diversity of subjects movement frequency was manipulated to induce
different grouping behavior. Phase coordination between subjects was found to be
metastable with inphase and antiphase tendencies. Higher frequency diversity led
to segregation between frequency groups, reduced intragroup coordination, and dis-
persion of dyadic phase relations (i.e. relations at different levels of description).
Subsequently, a model was developed, successfully capturing these observations. The

model reconciles the Kuramoto and the extended Haken-Kelso-Bunz model (for large-

v



and small-scale coordination respectively) by adding the second-order coupling from
the latter to the former. The second order coupling is indispensable in capturing
experimental observations and connects behavioral complexity (i.e. multistability) of
coordinative structures across scales. Both the experimental and theoretical studies
revealed multiagent metastable coordination as a powerful mechanism for generating
complex spatiotemporal patterns. Coexistence of multiple phase relations gives rise
to many topologically distinct metastable patterns with different degrees of complex-
ity. Finally, a new data-analytic tool was developed to quantify complex metastable
patterns based on their topological features. The recurrence of topological features
revealed important structures and transitions in high-dimensional dynamic patterns
that eluded its non-topological counterparts. Taken together, the work has paved the

way for a deeper understanding of multiscale coordinative structures.
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CHAPTER 1
INTRODUCTION

How multiple interacting components generate complex behavior at multiple levels
of description is one of the most fundamental problems of Complexity Science. The
present work probes for general principles of multiagent coordination dynamics in
complex systems, by means of experimental investigation of rhythmic coordination
between multiple people (Chapter 2), theoretical modeling of these experimental data
(Chapters 3) and developing a topology-based method for characterizing complex
dynamic patterns (Chapter 4). While preexisting studies primarily focused on systems
of very many or only a few components (large- vs. small-scale), the present analyses
are grounded on intermediate-sized ensembles (mid-scale), which are large enough
be to be examined on multiple levels of description and small enough to yield to
systematic experimental manipulations. In the following chapters, we show how the
study of mid-scale coordination connects phenomena and theories of coordination
dynamics across scales.

Specific backgrounds for individual studies are supplied in their respective chap-
ters (Chapter 2-4), each of which can be read as a stand-alone piece. The present
chapter provides a general context and motivation. We first clarify what kind of
complex systems we are talking about (as a colleague once said “1000 Complex Sys-
tem scientists have 1000 definitions of Complexity, with o« > 1”) and what kind of
principles the present work aims to, ultimately, provide a window into (Section 1.1).
We then review key phenomena and theories of large- (Section 1.2) and small-scale
(Section 1.3) coordination pertinent to the present work. Finally, we explain why the

study of mid-scale coordination is necessary and what we aim to accomplish with it.
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1.1 COMPLEX SYSTEMS AND MULTISCALE STRUCTURES

Living animals are constantly on the move. It is one of the most
characteristic things about them. Often we can see them running about,
breathing, catching food and eating it, and so on. If we look closer we find
that an animal is made up of different organs, and in all of them there is
something going on all the time. On an even smaller scale, the organs are
built out of cells, little lumps of living matter, each containing a special
kernel or nucleus. And each cell is always full of activity. [...] there are
incessant chemical actions and reactions.

In a living organism these changes are not isolated but are adjusted
to one another so that the right operations are carried out to produce the
right quantities of the various products. It is because we are so impressed
at the way in which all the separate processes work together harmoniously
that we call animals “organisms”. [...] If there is a “secret of life”, it
is here we must look for it, among the causes which bring about the
arrangement of innumerable separate processes into a single harmonious
living organism.

— C. H. Waddington [1]

These two paragraphs summarize nicely all central characteristics of the type of
complex systems relevant to our inquiry. First, such a system is dynamical, and its
dynamics is organized in multiple, nested levels of descriptions. Second, such organi-
zation comes from certain non-trivial coordination between many separate processes.
We may call such a complex system a multiscale coordinative structure.

Living animals are perhaps the most prominent examples of multiscale coordina-
tive structures as here suggested by Waddington [1], but similar properties are also
exhibited by complex social systems [2,3], which can be thought of as an extension
to the levels of living animals. Moreover, what is most intriguing is that there are
such shared organizational principles across physical, biological, social, and artificial
systems [4, 5].

The question is what kind of coordination, under what conditions, make multiple
separate processes one single multiscale structure, i.e. unifying them but without
losing complexity. One observation is that individual participants at a given level of

a multiscale coordinative structure behave in a qualitatively different and often more
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sophisticated manner than when they are outside of such a structure (i.e. emergent
behavior [6-8]). For example, four elements — O, C, H, N — make up 96% of human
body mass [9], but their daily activities can be vastly different depending on whether
they are in an living animal or in a soup. The same can be said about human
behavior in a civilization [10] or organized crime [11] compared to what it is outside
of such social institutions. This means that multiple interaction patterns of lower-
level components can all be stable (in the real world of course, what is stable always
depends on the time scale at which stability is defined). But once certain patterns are
formed (those that lead to a multiscale coordinative structure), the resulting higher-
level structures must provide additional guidance to the behaviors at lower levels to
the extent that, in return, they themselves are reinforced.

To study this problem theoretically, one first needs sufficiently general mathemat-
ical models of coordination dynamics that are restricted to neither a single level of
description nor the type of behavior of a specific constituting substance. One would
also want those models to be, in principle, able to capture some of the qualitative
features above in more definite terms. Most importantly, one would not want such
models to be detached from reality so that they could never be tested in, or provide
understanding of, any specific system. There is likely to be a family of models sat-
isfying these criteria. If that is the case, we can proceed to find even more general
mathematical principles that define this family of models.

One easy way to start is to model a general behavior (behavior that can be ob-
served in many systems) based on empirical observations of such behavior in a specific
system. This is exactly what we have done in this dissertation. The general behavior
is rhythmic coordination (see Section 2.1), and the specific system to provide empiri-
cal data is an ensemble of humans (Chapter 2). Subsequently, we captured empirically
observed behavior on multiple levels of description with a single model (equation 3.1

of Chapter 3). This model also reconciled two preexisting and well-known models of



coordination, namely, the Kuramoto model [12] (devised to capture gross-level statis-
tical features in large-scale coordination) and the extended Haken-Kelso-Bunz (HKB)
model [13] (devised to capture finer dynamics in small-scale coordination), which were
developed independently from each other. Nevertheless, both models share a concep-
tual origin in Synergetics [14-17], “the science of cooperation”, founded by Hermann
Haken (the connection is evident in the Preface of [12] and the name HKB), which
specifically deals with collective pattern generation in multi-component systems via
self-organization processes. In the following sections of this Chapter, we briefly review
these two preexisting models (the Kuramoto model in Section 1.2; the extended HKB
in Section 1.3), and discuss the key features of coordination phenomena they capture,

what is still missing, and the implications for our experimental design (Section 1.4).

1.2 LARGE-SCALE COORDINATION

Large-scale synchronization is among the most fundamental forms of collective be-
havior (synchronized flashing of fireflies, clapping of humans, firing of heart cells
etc.) [18,19], where diverse rhythmic processes coordinate into an coherent whole.
The Kuramoto model provides a simple mathematical description of how a large
number of diverse processes become one through an incoherence-to-coherence phase

transition [12]. The model (equation 5.4.5 of [12]) takes the form
N
. K :
bi=wi— ZSIH(%‘ =2) (1.1)
j=1

where ¢; is the phase of the i oscillator, w; the natural frequency of the i** oscillator
(the frequency of the oscillator when it is left alone), N the total number of oscillators,
and K > 0 the coupling strength (how much each oscillator is influenced by its relative
phase to other oscillators). To represent (uncoupled) diversity in the population, the
natural frequencies w; follow a random distribution with probability density function

P(w) symmetric around zero. Collective behavior is described by a complex order
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parameter (mean field of all oscillators),

N
7 =rev = N g e (1.2)
i=1

which can be thought of as a macro oscillator with amplitude r» and phase . After

a change of variable, equation (1.1) becomes
oi = w; — Krsin(p; — U) (1.3)

which states that each oscillator is entrained by the macro oscillator toward phase-
locking (i.e. to be in a constant relative phase to the order parameter). It is apparent
that whether the population behaves coherently will depend on how strong the en-
trainment is, determined by the percentage of oscillators that has already become
phase-locked (reflected by r) and the coupling strength K. In fact, K must surpass

a critical value for coherent behavior at a macro level to occur,

2
~ wP(0)

K. (1.4)

which marks the incoherence-to-coherence transition of the population.

Comparing this type of collective behavior to a multiscale coordinative structure
(Section 1.1), one immediately notices a problem — once oscillators are absorbed into
the whole, they behave identically and therefore are no longer separate processes.
Synchronization as described here produces order without complexity, and what we
need is order with complexity.

There are at least two ways to mitigate this loss of behavioral complexity at the
micro level. One is to consider a more complex coupling function, e.g., to include

more Fourier modes,
: K :
O = w; — NZch sink(p; — ¢;) (1.5)

with integer M > 1 and ¢; the coefficient for the k' Fourier mode. This allows

multiple phase clusters to coexist in the coherence regime [20]. Another is to look
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into the incoherence regime itself (K < K.), i.e. coordination without phase-locking,
which may sound like an oxymoron but the reason will become clear later on (e.g. in
Section 1.3 and Chapter 3).

Now that one is faced with infinitely many options as to what M, ¢, and K
should be, it is time to consult empirical data. One problem is that once we allow the
behavior of individual oscillators to diversify, the micro-level patterns are no longer
uniquely determined by this particular definition of order parameter in equation (1.2)
(e.g. [21-23]) (given that the coupling strength K and coefficient ¢, are unknown
a priori in empirical data). Meaning, one cannot rely on the macro statistics (i.e.
equation 1.2) alone to infer all necessary details of the coupling function. A systematic
study of micro-level dynamics will certainly help, but this is not very practical for
a large-scale system (NN too big). Thus, when people want to model the micro-level
dynamics in empirical observations, they usually turn to small-scale systems. The
extended HKB [13] is an example of such small-scale models, which as we shall see is

well-grounded in empirically observed coordination phenomena.

1.3 SMALL-SCALE COORDINATION

Rhythmic coordination at a small scale is perhaps best manifested in animal loco-
motion (e.g. swimming, walking, flying). Animals often have multiple stable gait
patterns [24-26] and are able to switch between them (e.g. walk, trot, and gallop
of a horse), which may be conceived as a kind of order-to-order phase transitions.
The Haken-Kelso-Bunz (HKB) model [27] was initially developed to capture such a
transition in human bimanual coordination (using finger coordination as a proxy to
gait patterns, i.e. “let your fingers do the walking” [28]). If one moves two index
fingers up and down rhythmically, it is easy to coordinate them inphase (up together,
down together; synchronization) or antiphase (one up, the other down). The rela-

tive phase here is the collective variable or order parameter for the collective of two.
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Interestingly, if the tempo of movement is increased, there will be a point where an-
tiphase coordination is no longer stable [29]. This leads to a bistable-to-monostable
transition, which can be observed as an antiphase-to-inphase transition if two fingers
initially coordinated antiphase.

To capture these phenomena, the HKB model describes the coordination dynamics

in the form
b = —asiné — 2bsin 2¢ (1.6)

where ¢ is the relative phase between two oscillators, a the first order coupling
strength, and b the second order coupling strength (i.e. coefficients of first two Fourier
modes). It is the ratio between the second to first order coupling k = b/a that de-
termines whether the system is bistable or monostable. When the coupling ratio is
greater than a critical value k& > k. = 1/4, the system has two stable fixed points,
one at inphase ¢ = 0 (in radian throughout this Chapter) and the other at antiphase
¢ = m; when k < k., the system only has one stable fixed point at inphase. The crit-
ical coupling ratio k. hence marks the bistable-to-monostable transition, capturing
key observations in human behavior [29].

The existence of an order-to-order transition is an important distinction between
the HKB (equation 1.6) and the Kuramoto model (equation 1.1), as the latter only
accommodates disorder-to-order or order-to-disorder transitions. On the other hand,
the HKB model does not actually have a disorder regime. Why? This has to do
with the left-right symmetry of the bimanual coordination task used in the human
experiment [29] — the natural movement frequency of the two fingers are very similar.
The extended HKB [13] was then put forward to address the situation where the

symmetry is broken,
¢ = 0w — asing — 2bsin 2¢ (1.7)

where a term dw was added denoting the difference between the natural frequency
7



of two oscillators. For a small increase of dw (from zero), the two oscillators remain
phase-locked, but the two fixed points are shifted away from being exactly inphase and
antiphase. A further increase of dw destabilizes the near-antiphase fixed point first,
and eventually the near-inphase fixed point as well. After all fixed points are gone,
the system is said to be metastable. This metastable regime of the extended HKB
model corresponds to the incoherence regime of the Kuramoto model in the sense
that there is no phase-locking. But a closer examination of the dynamics [13] shows
that in this regime components can still be highly coordinated but in a recurrent
rather than constant fashion, i.e. every time the two come close to certain phase
relations (near the old attractors inphase and antiphase) they dwell there for a while
(spending more time near old attractors than elsewhere; the time can be arbitrarily
long depending on a, b and dw) and then escape from that relation until they meet
again at another favorable relation. This phenomenon was first observed in fish
by von Holst [24], who referred to it as relative coordination. After the proposal
of metastability in the extended HKB, this type of relative coordination has been
confirmed in further experiments (see [30-36]). Importantly, metastability allows
integration and segregation to complement each other in the dynamics of coordination
such that two oscillators can be coordinated without losing individuality [37].

In short, small-scale coordination observed in living systems exhibits more com-
plexity, in the sense of multistability (multiple stable ordered patterns) and metasta-
bility (coordination without loss of separability), both captured by the extended HKB
model. In other words, the extended HKB model captures order with complexity,
which seems more suitable for describing the micro-level dynamics in multiscale co-
ordinative structures as discussed in Section 1.1. But we still have a problem — the
extended HKB is restricted to dyadic coordination, whereas a multiscale coordinative
structure requires more separate processes at the micro level to accommodate mul-

tiple levels of description. Extensions to the case of N = 4 (to capture quadrupedal



gaits in humans and animals [30, 38,39]) have been made (equation 17 of [38] and
equation 1 of [39]), but the scale remains too small to be analyzed at multiple levels
of description. To have a mathematical model that is corroborated by experimental
evidence at multiple levels of description, we found it inevitable to turn to “midscale”

experiments (i.e. experiments on systems with neither too few nor too many agents).

1.4 MID-SCALE COORDINATION

In the next few chapters, we present a series of studies based on a mid-scale human
experiment (N = 8, eight-agent coordination, with a total of 120 subjects; see Chapter
2) [35]. An ensemble of eight is just large enough to form higher-level structures (e.g.
grouping of agents) and small enough for lower-level details to be systematically
examined (without combinatoric explosion). The goal is to study the coordination
dynamics of eight people on multiple levels of description and to find an appropriate
model that captures experimental observations on all those levels.

We also want to control and manipulate the boundary conditions of the system to
see how they affect coordinative behavior. But what quantities to use to measure co-
ordinative behavior and define boundary conditions? From what is common between
the phenomena and models reviewed in Section 1.2 and 1.3, it is easy to see that the
variable most relevant to the coordination dynamics is relative phase (¢ for the HKB
model, or ¢;; := ¢; — ¢, for the Kuramoto model), and what constrain the dynamics
are natural frequencies (dw the difference between natural frequencies in the HKB
model, w; in the Kuramoto model) and coupling strength (a, b in the HKB model, K
in the Kuramoto model). We therefore designed a new experimental paradigm, which

can be considered as a physical realization of the system

N

i = w; — Zezjr(%‘, ©5) (1.8)

j=1
where we can measure ; the phase of each subject’s movement (the time derivative
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of phase ¢; = di;/dt, and relative phase ¢;; = ¢; — ¢, can be derived from phase
dynamics), and manipulate w; the movement frequency of each subject (by metronome
pacing) and coupling strength e;; € {0,1} (considered as connectivity). Here I is the
unknown coupling function to be found.

Following this paradigm, a human experiment was conducted where we manipu-
lated the natural frequencies (w;) of subjects to induce different grouping behavior
at the macro level. Coordinative behavior was examined at intergroup, intragroup,
and interpersonal levels. Detailed methods and results of this experimental study
are shown in Chapter 2, which is reproduced from the published version [35] with
minor modifications. In Chapter 3, we developed a model that successfully captured
the experimental observations on multiple levels of description, effectively by adding
the second order coupling of the HKB model to the Kuramoto model (or equation
1.5 with M = 2). Chapter 3 is a partial reproduction of the submitted version [40],
with an added section on metastability (Section 3.2.6). By studying the behavior
of the model, we found that metastable coordination between multiple agents pro-
duces both ordered and complex dynamic patterns. These metastable patterns can
be classified based on the geometrical and topological features of their corresponding
frequency graphs (each graph contains frequency time series of all agents). How-
ever, conventional tools are not designed for analyzing the geometric features of such
graphs. Hence in Chapter 4, we developed a new technique for studying multiagent
metastable coordination, using tools from computational algebraic topology. In this
proof-of-concept study, we successfully captured, using this new technique, collec-
tive phase transitions in real data, which were difficult to detect by more traditional
means. The combination of midscale experimentation, theoretical modeling and new
data analytical methods constitute the initial steps that we found necessary to take

toward a better understanding of multiscale coordinative structures.
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CHAPTER 2
THE HUMAN FIREFLY EXPERIMENT

2.1 INTRODUCTION

The function of living systems (e.g. brain, human society, ecosystem) depends on the
coordination of multiple components and processes. Such coordination depends on
intrinsic characteristics of the interacting entities as well as the form of interaction
between them (8,16, 28,41]. Living systems exhibit a myriad of rhythmic behav-
iors [42], e.g. humans with their daily, weekly, monthly routines [43] and physiologi-
cal rhythms [44]; brains with their waves [45]; and species with their life-cycles [46].
By virtue of its temporal symmetry (i.e. translational symmetry in time), rhythmic
coordination serves as a fine soil for experimental and theoretical study of laws of
interaction between components of dynamical systems. The study of two interacting
entities has laid experimental and theoretical foundations for addressing how coordi-
native structures form, adapt and change. Whether it is humans coordinating with
sensory stimuli [13,47], coordinated movements within the same person [29,48-50],
between two persons [51-57], two neuronal populations [31, 58], humans and ma-
chines [59-61], or humans and other species [62,63], similar tendencies to form or
learn certain relative phase and frequency patterns have been observed. Essential
phase patterns, their stabilities and transitions have been well described mathemat-
ically in terms of informationally coupled dynamical systems [27,38,64,65]. A little
beyond dyads, triadic and tetradic coordination have been studied mainly in animal
gaits or multilimb movements with a richer repertoire of patterns — combinations of

dyadic patterns satisfying certain symmetry constraints [25,30,66-68]. Beyond sys-
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tems with a relatively small number of interacting components, the focus of interest
leaps toward systems of much larger scales — e.g. flashing fireflies [69], neuronal pop-
ulations [70], or the clapping of an ardent audience [71] — whose sheer size eludes
detailed investigational techniques but favors low-dimensional measures at coarser
scales (e.g. collective synchronization). Such synchronization has been reproduced in
various coupled oscillator models, e.g. [12,72-74].

Despite this gap between systems of very few and very many components (with
rare exceptions, [75]), daily social interaction often unfolds in the middle, for example,
coordinating with a group of colleagues at work, or afterwards engaging in a variety
of gatherings with friends and families, or various forms of folk dancing and Ceilidhs.
The choice of the number of independently manipulatable components goes hand in
hand with available paradigms for approaching coordination phenomena. With very
few components, the repertoire of collective patterns and phase transitions can be
fully explored with the help of experimental manipulation and theoretical models,
but the limited size may curtail the complexity of spatial organizations. With very
many components, possible coordination patterns (described at a microlevel) become
too numerous to be studied exhaustively (due to high dimensionality of the phase
space); the large number of components also makes it difficult to utilize systematic
manipulations to carry the system through its repertoire of possible patterns. In-
stead, low-dimensional (macro) measures such as the overall level of synchronization
can serve as an order parameter to capture collective states of the system [12,16]. As
important as such descriptions of coordination are, macro measures meet their limit
when one attempts to characterize the system’s organizational complexity. Under
the broad umbrella of “incoherent” states, what are the possible organizations? How
can we explore such organizations systematically in the laboratory? To answer these
kinds of questions, a way is needed to experimentally manipulate the system’s coordi-

nation dynamics on multiple spatial and temporal scales of description. We chose an
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ensemble of intermediate size (N = 8 people) operating under the assumption that
this is big enough to reveal the system’s organizational complexity, yet small enough
to yield to experimental manipulation. Our strategy was to bridge this two-fold gap
of system size and experimental control.

We studied rhythmic movement coordination in ensembles of eight people who
were predisposed to move at the same or different frequencies. Existing empirical
findings and theories suggest that the form and stability of coordination varies with
the strength of coupling and the difference in natural frequency (frequency predispo-
sition) between components, e.g. [13,64,76]. On this basis, we hypothesized that ma-
nipulating the distribution of frequency predispositions and coupling strength should
produce different propensities for coordination, and induce different forms of collective
behavior. Because it is possible to control systematically and measure quantitatively,
frequency difference was chosen as a parameter to manipulate diversity within and
between group members. We wanted to know how different diversity conditions fa-
vor the formation, persistence and change of multiple groups that are potentially

integrated within themselves but segregated between each other.

2.2 RESULTS

Fifteen independent ensembles of eight people (N=120) participated in the study (for
details see Section 2.5 Materials and Methods). All were instructed to tap rhythmi-
cally on a touchpad. At the beginning of each trial, members of an ensemble were
each paced with a metronome; after the pacing period, they were able to see each
other’s taps as flashes (dubbed “human fireflies”) on an array of LEDs situated at eye
height in front of them. The task was to keep tapping at one’s own metronome fre-
quency (tempo) throughout the entire trial. No instructions were given to coordinate
with others.

To study how patterns of coordination among participants may form or dis-
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solve, we introduced different levels of diversity by manipulating the assignment of
metronomes to each participant. The metronomes divided the participants into two
groups of four with frequency difference (4 f, also referred to as level of diversity be-
low) of either 0 Hz (1.5 vs. 1.5 Hz), 0.3 Hz (1.35 vs. 1.65 Hz), or 0.6 Hz (1.2 vs.
1.8 Hz). Within each group the four participants were paced at the same frequency.
Overall, participants followed the metronome frequency during both pacing and in-
teraction phases, in accord with instructions (see Section E in S1 file of [35]). In the
following sections, we demonstrate the main findings, which may be best read along
with the extended quantitative and theoretical analyses provided in the Supporting
Information (S1 File) of [35] (the Sections A-D of the Supporting Information in [35]

are reproduced in Appendix A for Methods-related references).

2.2.1 Spontaneous phase coordination and spatiotemporal metastability

The dynamics of relative phase between participants revealed that the participants
spontaneously coordinated in various phase patterns and switched between them, de-
spite not being given any instruction to do so. Such dynamic patterns are exemplified
in Figure 2.1 A1-A3 which shows a trial of interaction among three persons (labeled
with numbers 1, 3 and 4, reflecting spatial location on LED arrays, see legends under
A2). The evolution of their relations is shown in (Al) as trajectories of dyadic rel-
ative phase (¢, reported in radians throughout this text) for pairs 3-4 (orange) and
1-3 (magenta). When a trajectory is horizontal, the pair is strongly coordinated by
holding an (almost) constant phase relation (termed phase locking or dwell); when
the trajectory is tilted, the pair is uncoordinated (phase wrapping). Dyad 3-4 (or-
ange) engaged in a long dwell at inphase (¢ =~ 0, 10-35s in A1, largest peak in A2),
then switched to a near antiphase pattern (¢ ~ m, 40s onward in A1, small peak in
A2). Such near inphase/antiphase patterns are signs of bistability widely observed in

biological coordination [32]. Dyad 1-3 (magenta) also coordinated near inphase but
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in much briefer and recurrent dwells (around 10, 20, 30s in A1, largest magenta peak
in A2), interleaved with escapes from it. This type of intermittent or relative coor-
dination [24] characterized by consecutive epochs of dwells and escapes corresponds
to the metastable regime in models of coordination dynamics [28,33]. Evidence for
metastabilty was often seen in single trial dynamics (see Section J in S1 file of [35] for
a statistical approach). Besides bistable and metastable coordination observed within
specific pairs of participants, a higher level interaction becomes apparent when we
examine the two pairs together: during the long dwell of Dyad 3-4, three epochs of
phase shift (bumps in orange curve at 15, 25, 35s in A1) followed precisely after each
dwell of Dyad 1-3 (magenta). Moreover, as each dwell of Dyad 1-3 became longer
than the previous one, the phase shift in Dyad 3-4 became bigger, to the point where
the shift was so big (38s) that Dyad 3-4 broke up their predominant inphase pattern
and switched to antiphase. This finding indicates that the joining of a new member
(e.g. person 1) induced changes in preexisting coordinative relations (e.g. Dyad 3-4),
strongly suggesting that multiagent coordination is more than the sum of isolated
dyads (see Section H in S1 file of [35] for a statistical analysis). As an aid to visual-
ization, the spatial arrangement corresponding to the foregoing temporal changes are

illustrated in A3.
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Figure 2.1: Coordination dynamics of phase relations among multiple agents. (A1) Ex-
emplary relative phase trajectories show the metastable phase coordination of three persons
(dynamics in ¢ € [0,27) was repeated in ¢ € [—27,0) for visual continuity). Shortly into
the interaction stage (10s), dyad 3-4 coordinated near inphase for 25s (relative phase ¢ ~ 0
orange, flattening of ¢ trajectories indicates phase coordination, or dwells), then switched
into a pattern near antiphase ( ¢ ~ +7 orange, 40-47s). Dyad 1-3 also dwelled around
inphase but for shorter durations (A1, magenta curve flattening around 12, 22, 32s). The
interaction shows tendencies for bistability (inphase and antiphase), as also seen in the
histograms of the relative phase (A2), with the orange distribution more pronounced at
antiphase than the magenta. (A3) shows the spatial organizations of phase coordination
among agents 1, 3, and 4 at moments corresponding to the time-axis in (A1; for interpreta-
tion see B4 below). (B1-4) shows an example of four-person interaction in similar format to
the above. Dynamics of ¢ (B1) reveals phase coordination on various time scales, visualized
in (B3) where the length of a bar annotates the duration of phase dwell between a pair
of participants. Dyad 1-2 (red) showed the longest dwell, Dyad 1-4 (green) a bit shorter,
and Dyad 4-3 (blue) the shortest. The coexistence of multiple timescales of coordination
gives rise to a constantly evolving spatial organization of the group, shown as a sequence of
graphs in (B4) where each node presents a participant and an edge indicates phase dwell
(color coding corresponds to B1-3, black edges are dyadic dwells whose dynamics are not
shown in B1-2; coordination within the other group, i.e. agents 5, 6, 7, 8, is not shown for
reasons of clarity).

In the experiment, epochs of phase coordination were mostly transient or inter-

mittent (i.e. metastable dwells), covering a wide range of time scales, with a mean
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duration of 4.64s (4 4.04s) and a long tail of more persistent phase patterns up to the
entire duration of interaction, about 50s (See Fig B in S1 file of [35] for distribution).
The confluence of metastability and multiple coupled agents allows the coexistence of
multiple time scales of coordination in a group, as Figure 2.1 A1-A3 already hinted
(orange — long dwell, magenta — short dwells with more frequent recurrence). Mul-
tiple coordinative time scales allow different members of a group to come together
at different times, thus allowing the group to visit a variety of spatial patterns at
different times. An example of four-person interaction is given in Figure 2.1 B1-B4
illustrated as three dyadic relative phases (dynamics in B1, distributions in B2). The
duration of phase dwells is marked in (B3): red dyad with a long dwell, green dyad
a bit shorter, and blue dyad even shorter. Such multiplicity in the time scale of
metastable coordination led the four-person group through a variety of spatial pat-
terns from moment to moment (B4) rather than to persist as a static structure (which
would be the case if, e.g., phase coordination were absolutely stable). Thus, in the
present case of intermediate sized group arrangements, spatiotemporal metastability
— coexisting tendencies for integration and segregation — is rather more characteristic

of coordination than collective synchronization [33,77].

2.2.2 Dominant patterns of coordination and their relation to diversity

When all phase relations were considered in aggregate, we found that inphase co-
ordination was clearly a dominant phase pattern (central peaks in distributions of
relative phase ¢ in Figure 2.2). Yet this dominance of inphase depended on both
local and global diversity. Inphase was more dominant locally within a group (par-
ticipants paced at the same frequency) than between groups (where diversity was
introduced by ¢ f; Figure 2.2, A1, probability density for within-group ¢ significantly
above chance from 0 to 0.247, A2, for between-group ¢ significantly above chance

from 0.057 to 0.087, at p < 0.05, where ‘hat’ denotes Bonferroni correction for mul-
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tiple comparison throughout the text; see Section G in Sl file of [35] for confidence
intervals of chance level distribution). Globally, the dominance of inphase in the
entire ensemble decreases as diversity increases (B1-3 for 6 f = 0, 0.3, 0.6 Hz respec-
tively: B1 significantly above chance from 0 to 0.147, B2 from 0 to 0.097, p < 0.05;
B3 n.s.). This suggests that inphase coordination is an important characteristic for
the formation and maintenance of coordinative structures regardless of group size,
especially when diversity is low. A much weaker preference for antiphase can also be
seen, primarily when the diversity is low (i.e. in Figure 2.2 A1 for within-group rela-
tive phase and B1 for  f = 0; based on bin-wise statistics, the antiphase is signified
by the separatrix between inphase and antiphase near 7/2 whose probability density
is significantly lower than chance level, more specifically with p < 0.05 at 0.48 to 0.57
and 0.54 to 0.587 for Al, 0.4x for A2, 0.587, 0.627 and 0.657 for B1). Considering
only epochs of strong coordination (dwells), we found a wide range of phase relations,
where antiphase, along with inphase, was also a preferable phase relation (for details

see Section F in S1 file of [35]).
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Figure 2.2: Aggregate distributions of phase relations. Blue solid lines are distributions
of relative phases in the experiment (histograms were computed and statistically tested in
the interval [0, 7] then repeated in the interval [—2m,27] for visualization). Red dashed
lines correspond to chance level (uniform) distribution. (A1) shows relative phase between
members within the same frequency group, (A2) between different groups, (B1-3) for en-
sembles with diversity level §f = 0, 0.3, 0.6 Hz respectively. Inphase (central peak) is
clearly a dominant pattern throughout, but its dominance diminishes with the diversity pa-
rameter displayed in (B1-3). Inphase preference was more pronounced within-group (A1),
where participants shared the same initial frequency, than between-group, where frequency
diversity was introduced (A2).

Beyond patterns of phase relations, other types of coordination were observed.
One of them is a form of multifrequency coordination that binds behavior at different
frequency ratios [49, 50,78, 79]. We studied which frequency ratios constitute pre-
ferred coordination patterns by comparing their probability density to chance levels
(computed from randomly permuted taps, see Section D in Sl file of [35] for details).
Chance level distributions reflect expected occurrence of different frequency ratios
as a result of participants’ maintaining metronome frequencies without interacting
with each other. Hence, we expected chance level distributions to peak around ratios

corresponding to the three diversity conditions, i.e. 1:1 (§ = 0 Hz), 9:11 (§f = 0.3
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Hz), and 2:3 ( 6f = 0.6 Hz). Figure 2.3 shows the distribution of instantaneous
frequency ratios in terms of within-group (Figure 2.3A) vs. between-group (Figure
2.3B) coordination for different levels of diversity (blue §f = 0 Hz, red f = 0.3 Hz,
yellow § f = 0.6 Hz). A frequency ratio is a preferred coordination pattern if its prob-
ability density (solid lines) is above chance level (light-color bands). Within-group
participants coordinated primarily at 1:1 ratio (Figure 2.3A, all p’s < 0.05), which is
consistent with the high level of phase-locking reported above. For between-group co-
ordination (Figure 2.3B),1:1 was still the preferred ratio when there was no diversity
(0f =0 Hz, p < 0.05); a higher order ratio near 2:3 was preferred when the diversity
was large (0f = 0.6 Hz; p < 0.05). For intermediate diversity (0f = 0.3 Hz), the
between-group frequency coordination was barely above chance at metronome ratio
9:11 (for metronomes at 1.35 Hz and 1.65 Hz), but significantly more concentrated
than chance near 1:1 (p < 0.05). In short, under appropriate diversity conditions,
lower order (1:1) and higher order (e.g. ~2:3) frequency coordination can coexist
— a basis for complex spatiotemporal coordination. Furthermore, this type of coor-
dination with frequency ratios (one which is less straightforward to detect and less

studied) is specific to between-group interactions.
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Figure 2.3: Multifrequency coordination. Ensembles with low diversity were dominated
by 1:1 coordination, while ensembles with high diversity also steered towards higher-order
ratios. Solid lines show the probability density of frequency relations within- (A) and
between-group (B) for the 3 diversity conditions (color coded). Thin shaded areas (with
corresponding colors) are confidence intervals for null distributions (p < 0.0005 for each of
100 bins, corresponding to p < 0.05 for an entire distribution using Bonferroni Correction;
generated from randomly permutated taps, which represent the expected distribution from
non-interacting agents tapping at required frequencies). For within-group relations (A),
the peaks at 1:1 are far above chance, indicative of stabilizing phase relations at the same
frequency. For between-group relations (B), low to moderate diversity (blue, red, §f = 0,0.3
Hz) led to above-chance coordination at 1:1; in contrast, for high diversity (yellow, §f = 0.6
Hz, corresponding to metronome ratio 2:3), coordination was below chance at 1:1 but far
above chance at a higher order ratio near 2:3.

2.2.3 Segregation and integration of groups: critical diversity

Having studied coordination at the micro level (person to person), we now turn to
the macro level of integration and segregation between groups. In order to do so, we
first quantified coordination as the level of phase locking between individuals from the
same and different initial groups (i.e. within- and between-group coordination respec-
tively). Figure 2.4A shows the average results. We found that as initial frequency
difference between groups (Jf) increased, phase-locking between groups weakened
dramatically (Figure 2.4A, right cluster). Interestingly, phase-locking within groups
(no diversity within-group by design) was also weakened by virtue of the difference
with the other group (Figure 2.4A, left cluster, notice orange and yellow bars signifi-
cantly shorter than blue; MANOVA | interaction effect, F'(2,7246) = 198.2, p < 0.001;

see S12 for MANOVA main effects analysis; see Section A.5 for a dynamic view).
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That is, local coordination (e.g. within group) was influenced by the larger context

(difference with other groups), as exemplified also in Figure 2.1A.
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Figure 2.4: Diversity parametrically controls integration~segregation of groups within
ensembles — the emergence of spatial scales. (A) Phase locking between groups decreased
monotonically when between-group df increased (A, right). Within groups however (A,
left), where agents’ initial frequencies were uniform, phase locking was still affected by the
presence of another group of a different frequency (red, yellow bars significantly lower than
blue bar), demonstrating that interactions are sensitive to the multiagent context in which
they are embedded. (**p < 0.01; ***p < 0.001; error bars represent standard errors) (B)
A scatterplot reveals linear associations between phase locking within- and between-group
(each point represents a trial), whose slopes were modulated by the diversity parameter
df (denoted by color, see legend). Linear regressions had positive slope for lower diversity
(blue and red colored lines) indicating integration of initial groups into larger coordinative
structures, while a negative slope was found for the largest diversity (yellow line), indicating
intergroup segregation. A critical parameter of diversity (0f*) was identified that borders
the regimes of integration and segregation (black line).

Next, we quantified group-level segregation~integration by studying the relation
between within-group and between-group coordination. If more within-group coordi-
nation leads to more between-group coordination, the groups may be said to become
integrated. If more within-group coordination leads to less between-group coordi-
nation, the groups may be said to become segregated. In Figure 2.4B, for the zero
intergroup difference (§f = 0 Hz, blue dots), a large value of within-group phase-

locking is paired with a large value of between-group phase-locking, indicating that
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the initial groups have merged. The same is true, though to a lesser extent, for
0f = 0.3 Hz. For 0f = 0.6 Hz, however, a larger value of within-group phase-
locking is associated with a smaller value of between-group phase-locking, suggesting
that stronger coordination within the group prevents coordination with members of
the other group, or conversely, switching to another group reduces the coordination
with one’s original group. Quantitatively, for small diversity (§f = 0,0.3 Hz), initial
groups integrated into one supergroup, as seen from the positive slope of regression
lines (Figure 2.4B, blue, red; pY* = 0.88, #(84) = 20.0, p < 0.001; p¥%3H= = (.31,
t(84) = 3.94, p < 0.005). For larger diversity (§f = 0.6 Hz), the groups became
more segregated (negative slope; Figure 2.4B, yellow; 8%6#% = —(.14, ¢(85) = —2.83,
p < 0.01).

To estimate the critical diversity that marks the boundary between integration
and segregation, we regressed the degree of integration ﬁff against the intergroup
difference § f. We found a significant negative linear relation between those variables
(linear regression, oy = 0.86, t(1) = 20.5, p < 0.05; a; = —1.70, t(1) = —15.7,
p < 0.05). By finding when integration vanishes (327 = 0), we identified a critical

frequency difference (6 f*) of 0.5 Hz as a boundary between the two different macro-

organizations, i.e. a critical value that distinguishes segregation and integration.

2.2.4 Segregation and transitions of spatial order

We now return to real time dynamics to unpack the meaning of macro-level “segrega-
tion” in the foregoing statistical conclusion. In an example shown in Figure 2.5, the
ensemble was initially divided into two frequency groups (early on in Figure 2.5A;
faster group of agents 1 to 4, slower group of agents 5 to 8), thanks to the large
difference between their metronome frequency (§f = 0.6 Hz). Soon the ensemble de-
veloped into multiple local structures which were coordinated within and segregated

between each other (three pairs 3-2, 5-7, 6-8, and two individuals 1, 4; this spatial
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order can be easily seen in D, first two graphs, 10-25s). The large initial diversity
allowed the coexistence of multiple segregated groups and enabled the ensemble to
form a sustained spatial order by providing sufficient frequency isolation between local
structures (in contrast to the low diversity scenario where spatial patterns go through
constant reorganization, e.g. Figure 2.1, Fig S8). However, a segregated spatial order
does not have to be static. To the contrary, there was a sudden transition from one
segregated spatial order (Al and 2nd graph in D) to another, also segregated, spatial
order (A2 and 3rd graph in D, a period marked with multiple partner exchanges),
then back to the original (A3, and 4th graph in D). This kind of micro-level exchange
of members across frequency groups has been observed in 77% of the trials in segre-
gated condition (6f = 0.6 Hz). It suggests that segregation is a macro property of
ensembles, and sustaining despite the coexistence of dynamical exchanges at micro

level.
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Figure 2.5: Frequency diversity contributes to spatial organization and reorganization.
(A) Instantaneous frequencies of an ensemble of eight interacting agents (smoothed by
averaging four consecutive taps). Agents 1 to 4 (warm colors) were paced with the same
metronome frequency 1.8 Hz, and similarly agents 5 to 8 (cold colors) were paced at 1.2
Hz, (i.e. 6f = 0.6 Hz), which helped create two initial frequency groups. Soon after the
beginning of the interaction (~12s, corresponding to the first graph in D), initial groups
divided into five local structures: three pairs (3-2, 5-7, 6-8) and two individuals (agent 1
largely independent, agent 4 oscillating between agent 1 and pair 3-2). The frequency pairing
held up to the time of (A1), then a sudden reorganization occurred from (A1) to (A2) — an
exchange of partners (3-2 broke up and recoupled into 4-3, 2-5; 7 left alone; corresponding
to the 3rd graph in D). The new pairing lasted a few seconds then returned to a similar
organization to (A1) at the time of (A3). Phase relations of the pairs involved in the
reorganization (A1-3) are illustrated in (B) as time series and in (C) as distributions of four
dyadic relative phases. The new organization at A2 lasted exactly the time for pair 3-2 (blue)
to break up an antiphase relation (27s) then return to it (33s) after phase wrapping for one
cycle. This transition in phase relations corresponds closely to the transitions of frequency
grouping. To visualize the spatial consequences of such phase/frequency regrouping, graphs
in (D) were used as representations of the coordinative structure. Each node represents a
participant at the actual location of the LED representing that participant (up to rotation).
Each edge represents the existence of strong phase coordination between two participants
at the time (aligned with x-axis in B). The spatial reorganization is apparent from the 2nd
and 3rd graph aligned to (A1) and (A2) respectively. Interestingly, the 3rd graph, albeit
distinct from the rest, is in fact isomorphic to the other graphs.
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2.3 DISUCSSION

2.3.1 Integration and segregation in a diverse group

Rhythmic coordination is ubiquitous in natural systems from the cells of the heart
to the neurons of the brain, from fireflies to people [18,19,28,69,71,75,80-82]. The
convergence of multiple interacting elements to global synchronization has been the
focus of experimental and theoretical studies [12,71-74,83,84]. Behavioral synchro-
nization is known to facilitate social communication and the development of social
affection or bonding [85-89], and is important to understanding social coordination
dynamics [90,91]. Nevertheless, within a community, people coordinate in multiple
social groups at various spatiotemporal scales — a complex organization that is far
from uniform synchronization [92-94]. In fact, the components of living systems often
compartmentalize into distinct communities or modules, highlighted by dense inter-
actions within communities and loose interactions between communities [95,96]. This
form of organization, embracing both integration and segregation among its elements,
can lead to greater persistence and robustness of the system [97-100], and influence
structural and functional complexity depending on the scale of integration [101-103].
Investigation of the conditions leading to the formation, change, and dissolution of
segregated structures is a necessary step to understanding and controlling complex
systems.

We demonstrated experimentally how coexisting groups integrated and segregated
in an ensemble of eight interacting people. Each half of the ensemble was predisposed
to move at a distinct frequency prior to social interaction, thereby creating two initial
frequency groups with a controllable parameter of diversity between them (0 f). Peo-
ple engaged in more phase coordination with those who were predisposed to move at
the same frequency than with those who performed at a different frequency (Figure

2.4A; Fig S11 left). This is a form of “homophily” — people prefer interacting with

26



those who are similar to themselves than with those who are different [104] — known
to contribute to segregation in diverse communities [105-108]. Indeed, the integrating
force of sameness is complemented by the segregating force of difference [37].

To what extent do quantitative changes in intergroup diversity induce a qualitative
change in intergroup relationships? We have shown that low-to-moderate diversity
led to integration of the groups (6f = 0,0.3 Hz; Figure 2.1B): more coordination
within-group was associated with more coordination between-group. High intergroup
diversity led to segregation (6f = 0.6 Hz; Figure 2.1B): more coordination within-
group was associated with less coordination between-group. Parametrically varying
diversity made it possible to estimate the critical value of diversity (6 f*): exceeding
this critical value led to macro-level segregation; remaining below the critical value
led to macro-level integration. Identifying the critical values of a dynamical system
empirically proves to be a valuable step in many situations, not only to provide essen-
tial information on the organizing principles and potential behaviors of the system,
but also to serve as key phenomena to be reproduced in theoretical models [109,110].

A complex system consists of interactions at multiple spatial scales, where activ-
ities at one scale are connected with those of another scale [4,111]. How the macro
environment constrains micro activities was illuminated by comparing dyadic inter-
actions embedded in a group with expected behavior of dyads in isolation. If dyads
(micro) were not influenced by the larger environmental context (macro), the same
amount of coordination would be observed within groups at all three levels of in-
tergroup diversity. The data say otherwise: phase locking within a group was in
fact weakened by intergroup diversity (Figure 2.4A, left). This shows that when a
system has multiple components, dyadic interactions may not be fully understood
without taking into account the larger environment or context they are embedded

in [8,112,113].
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2.3.2 The patterns of coordination

To further understand the micro dynamics of social interaction, we identified the
specific phase patterns people adopted. Overall, we found that inphase was visited
significantly more often than other phase relation, yet its prominence diminished with
increasing diversity (Figure 2.2). That is, diversity induced a dispersion of phase pat-
terns. Absolute synchronization between components’ behavior is not always desir-
able: excessive synchrony may induce pathological collective dynamics [114] or impede
complex functions [103,115]. Diversity may come to the rescue. Besides inphase, a
weaker preference of antiphase over various other phase relations also appeared (Fig-
ure 2.2; antiphase stood out more in episodes of strong interactions, see Fig C in S1
File of [35]). The present results resonate with existing studies of human rhythmic
coordination [27,28]. When coupling was sufficiently strong, the tendency for two
oscillatory components to coordinate inphase or antiphase was found across scales,
particularly when the components have similar frequency predispositions [116]. When
coupling was sufficiently weak, however, the antiphase pattern was more susceptible
to natural frequency differences (see e.g. [13,64,76]). Both diversity in frequency pre-
dispositions [13] and multiagent environment [25,67,117-119] help engender a variety
of phase relations that are neither inphase nor antiphase. The agreement between
the statistical properties of the interactive behaviors in an ensemble of eight persons
and the dynamic properties of dyadic coordination suggests that dyads remain the
most stable unit of spontaneous coordination. Yet how can group coordination be
achieved with primarily dyadic interactions? This led us to explore the dynamics of
phase relations.

Phase relations do not have to be static, as social coordination often evolves on
multiple time scales [92,93,120]. Over the course of interaction, we found that most
phase relations only lasted a short period of time (4-5s, Fig B in S1 File of [35]).

Two partners dwell in a phase relation for a few seconds before a “breakup” or “es-
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cape” from that relation, and then re-engage the next time they come across a favor-
able phase relation (e.g. Figure 2.1). The recurrent relation embodied by a series of
dwells and escapes is characteristic of metastable coordination dynamics [33,116,121].
Theoretically and empirically, metastability occurs in weakly coupled dynamical sys-
tems when there is sufficient difference in the components’ frequency predispositions.
The combination of symmetry breaking and weak coupling eliminates perfectly sta-
ble phase relations which are replaced by intermittent or recurrent phasing. In the
present study, quantitative analysis confirms that metastability prevails in all condi-
tions of interaction (Fig SJ in S1 File of [35]). Notice that, the sequence of dwells
and escapes of phase relations also manifests as oscillations in movement frequency
(e.g. Fig G in S1 File of [35]). In contrast with stable coordination in which com-
ponents eventually converge to the same frequency, metastability allows components
to visit a range of frequencies while still maintaining “social bonds” via intermittent
dwells. When multiple metastable relations coexist in the same group, it becomes
possible for a person’s transient escape from an existing relation to be at the same
time a dwell in a new relation. This chimeric feature (c.f. [77]) allows members of a
community to participate in multiple segregated substructures (e.g. a reading club,
and a hiking team) while maintaining both the separability of those substructures
and communication between them. Such continuous change of membership helps
large communities to persist [122] and increase global level of cooperation [123]. Spa-
tiotemporal metastability in multiple-component systems suits both the intuition of
daily social interaction, as well as the dynamic patterns observed in large scale social
networks [92].

Phase-locking constitutes a rather strong form of coordination. Such coordination
comes at a cost in both time and energy if the partners possess different frequency
predispositions: the chasm of frequency difference, jointly or unilaterally, must some-

how be crossed. In the present experiment, not all forms of coordination required such
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costly crossovers. As diversity increased, people from different groups were found to
adopt particular frequency relations (or ratios) of higher order (e.g. near 2:3, Fig
3B, yellow) as opposed to converging to a single frequency (1:1). Frequency rela-
tions appear in the more familiar context of music as polyrhythms. Theoretical and
experimental studies have shown the viability of different frequency ratios: higher
order ratios (e.g. 2:5, 3:5) are more difficult to maintain (less stable) than lower order
ratios (e.g. 1:3, 2:3) in accordance with so-called Arnold tongue and Farey tree prin-
ciples [50,79,124,125]. Such frequency relations enable segregated groups to maintain
communication between each other, without sacrificing within-group cohesion, thus
allowing complex coordinative structures to form. Such cross-frequency communi-
cation may serve to integrate local activities over long distance and time scales in

complex systems, including the brain [4,126, 127].

2.4 CONCLUSIONS

Our goal was to elucidate the coordination dynamics of ensembles of eight people,
where the ensemble is small enough for systematic manipulation in the laboratory,
but not too small as to prevent the unfolding of complex social dynamics (i.e., simple,
but no simpler). At the macro level, we studied the integration and segregation of
groups and how it affects, at the micro level, dyadic interactions embedded within.
A novel finding was that the domains of integration and segregation between groups
are demarcated by a critical level of intergroup diversity. Diversity across groups also
affected the strength and forms of dyadic coordination within groups. In particular,
a metastable form of phase coordination was revealed in which phase relations were
intermittent rather than stable, thereby allowing people to switch flexibly between
partners as a means of maintaining both diversity and unity. When groups were
segregated and phase coordination became difficult, social coordination also took the

form of cross-frequency coupling. The present work provides a multiscale portrait
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of the coordination dynamics among multiple agents, and thereby offers quantitative
details and reality checks for modelling social dynamics. The analytical methods used
here can be extended to study segregation and integration in larger systems, where
an abundance of scales of interaction is likely to further unveil the complexity and

stability of large scale networks or coordinative structures.

2.5 MATERIALS AND METHODS

2.5.1 Participants

120 participants (76 female, age 24 + 8 yrs.) participated in the experiment, making
up 15 independent ensembles of eight. All participants were right-handed except 4,
who were all able to complete the tasks without difficulty. The protocol was approved
by Florida Atlantic University Institutional Review Board and in agreement with the
Declaration of Helsinki. Informed consent was obtained from all participants prior to

the experiment.

2.5.2 Experimental setup

For each ensemble of eight, participants were randomly seated in booths around an
octagonal table. They did not have direct visual contact with each other. Each par-
ticipant was equipped with a touchpad (green rectangle in Figure 2.6) and an array
of eight light-emitting photodiodes (LEDs; yellow in Figure 2.6). Each tap of a par-
ticipant was broadcast to all participants (including self) in real time as a single flash
of an assigned LED (hand contacts touchpad, light on; hand leaves touchpad, light
off). The tap flash signals were converted and transmitted through a signal processing
pipeline consisting of a PC flanked by two microcontrollers (MCs; one for input, one
for output; communicates with the PC through serial port at 57600 bps). The input
MC samples movement data from the touchpads at 250 Hz (1=touch, 0=leave) and

sends data to the PC. Dedicated software (written in C++) runs on the PC, which
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receives tapping data from the input MC, and controls the spatial configuration of
LEDs and the network connectivity among participants. The spatial configuration
map assigns each LED on each array to represent a particular participant. The spa-
tial configuration map was randomized across different ensembles of eight, but fixed
for each ensemble throughout an experimental session. In this particular experiment,
the network connectivity map determines whether a particular participant can see
(1) only self-produced flashes; (2) self-produced flashes and a metronome (computer
generated flashes, see Procedures); or (3) self- and other-produced flashes. After the
spatial and network mapping are completed, the PC sends 64 bit data to 8 LED ar-
rays via the output MC, synchronized to each sample from the input MC (tap-to-flash

latency 2.5-4.5 ms, less than 1% of the shortest period of metronomes).
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Figure 2.6: Experimental Setup. Fight participants are seated around an octagonal table;
they do not have direct vision of each other. Rather, they are exposed to each other’s tapping
behavior through touchpads (record tapping; green) and arrays of LEDs (display self and
others’ taps as flashes; yellow). On each LED array, there is a one-to-one correspondence
between LEDs and participants. (black panel) The mapping was rotated for each array
so that a participant always saw self-behavior at the lowest LED (white box). All LEDs
labeled red represent people who were paced by metronomes of the same frequency as for
self. LEDs labelled blue represent people paced to metronomes at another frequency (actual
LEDs were all in the same color). By such metronome assignment, participants of the same
ensemble were split into two initial frequency groups. By manipulating the metronome
difference between the two groups, we created different levels of diversity, thereby inducing
integration~segregation at different spatial scales.

2.5.3 Procedures

Each trial of the experiment lasted 68s and consisted of three stages. In Stage 1
(5s), participants tapped rhythmically at their own comfortable frequency, only see-
ing self-produced flashes (Figure 2.6, black inset “self”). In Stage 2 (10s), all the
non-self LEDs started to flash in synchrony at a preassigned frequency, basically
a metronome (initial phase randomized between trials and subjects). Participants

were instructed to match their own tapping frequency to the metronome frequency,
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and remain tapping at that frequency throughout the rest of the trial even after the
metronome disappeared. Following a 3s transient, subjects were exposed to each
other’s rhythmic behavior (Stage 3, 50s), each LED flashed corresponding to a par-
ticular participant’s taps.

We manipulated intergroup behavior by assigning metronomes of different fre-
quencies to different participants. In order to emphasize frequency diversity, spatial
symmetry was imposed as follows: from each participant’s perspective, persons pre-
sented at the north, west, and east of the center of the LED array were always paced
with the same metronome as self (south to center), whilst the others were paced with
another metronome. Thus, metronome assignment was designed to split eight people
into two initial frequency groups (red group and blue group in Figure 2.6, black inset).
Frequency diversity thus appears across groups not within groups. Specifically, for
each trial, group metronomes were assigned following one of the three conditions: (1)
1.5 Hz vs. 1.5 Hz, (2) 1.65 Hz vs. 1.35 Hz, and (3) 1.8 Hz vs. 1.2 Hz. With the same
mean frequency (1.5Hz), the three conditions correspond to three levels of between-
group metronome difference (§f) which we term a diversity parameter: §f = 0 Hz,
0f =03 Hz, df =0.6 Hz.

Each ensemble of eight participants completed 24 trials in random order, including
6 trials in which participants were only connected to people within their own group
(results not reported in this paper) and 18 trials in which every participant was
connected to every other participant. In the present paper, we consider the effect
of different levels of between-group difference on fully connected ensembles of eight

people.

2.5.4 Statistical analyses

Distributions of relative phase (¢) and frequency ratio (FR) were compared to chance

level using permutation tests. Ten thousand randomly permuted time series were used
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for constructing the confidence intervals of chance level distributions. The significance
level was chosen to be p = 0.05 (with Bonferroni correction). Computational details
are shown in Section A.1 and A.4 in Appendix A.

To compare the level of phase-locking in different conditions, two-way ANOVA
was used (2 x 3 for relation x ¢ f) with Type III Sums of Squares; Tukey Honest
Significant Difference tests were used for post hoc comparisons (see Section A.2 for
details).

To measure the level of integration between groups, we regressed the level of
within-group phase locking against between group phase-locking separately for 3 di-
versity levels. The slopes of the regression lines (ﬁff ) reflect the level of integration
(positive slope = integration, negative slope = segregation). The critical level of
diversity (6 f*), corresponding to zero-slope (f; = 0), was found through linear inter-

polation (see Section A.3 for details).
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CHAPTER 3
A CROSS-SCALE MODEL OF COORDINATION DYNAMICS

3.1 INTRODUCTION

Coordination is central to living systems and their complexity, where the whole can
be more than and different from the sum of its parts. Rhythmic coordination [44] is
of particular interest for understanding the formation and change of spatiotemporal
patterns in living systems, including e.g. slime mold [128], fireflies [129], social groups
[71], and the brain [28,33]. Theoretical formulations of coordination problems are
often in terms of coupled oscillators, whose behavior is constrained by their phase
relations with each other [12,18,38]. Existing studies of phase coordination often
focus on systems of either very few oscillators (small-scale, mostly N = 2) [28,39,118],
or very many oscillators (large-scale, N — oo) [130-132]. The in-between is barely
covered. In the present work, we take an experiment-theory combined approach
to show how coordination in-between helps us connect small-scale and large-scale
theories of coordination.

But first, how are they different? Small-scale models were usually developed
to capture empirically observed coordination patterns, as in animal gaits [66], bi-
manual movement coordination [27,29], neuronal coordination [133], interpersonal
coordination [53,134], human-animal coordination [62] and human-machine coordi-
nation [59,60]. They describe multiple stable coordination patterns (multistability)
and the transitions between them (order-to-order transitions), e.g. from a trot to a
gallop for a horse [135]. In humans, dyadic coordination patterns like inphase and

antiphase (synchronization, syncopation) were found across neural, sensorimotor, and
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social levels (see [28,33] for reviews), well captured by the Haken-Kelso-Bunz (HKB;
for two identical components) [27] and extended Haken-Kelso-Bunz (HKB) model
(extending the HKB to capture how phase relations are affected by the difference be-
tween two components; the extended HKB includes the HKB as a special case) [13,64].
However, the extended HKB, while deeply grounded in empirical observations, was
restricted to coordination problems of N = 2. In contrast, large-scale models are
more concerned about statistical features like the overall level of synchrony, disorder-
to-order transitions, but not so much about micro-level patterns. As a representative,
the classical Kuramoto model [12] is applicable to describing a wide range of large-
scale coordination among, e.g., people [73,132], fish [136], and neural processes [131],
often studied analytically for its incoherence-to-coherence transition (for N — oo;
see [72,137] for reviews).

Although the extended HKB and the classical Kuramoto model emerged sepa-
rately, they connect to each other by an interesting difference: the Kuramoto model
with N = 2 is almost the extended HKB model except that the former lacks the term
responsible for antiphase coordination in the latter (more accurately, the bistability
of inphase and antiphase). Bistability of inphase and antiphase coordination, with
associated order-to-order transitions and hysteresis, happens to be a key observation
in small-scale human experiments [29,32]. This begs the question of whether there is a
fundamental difference between large-scale and small-scale coordination phenomena.
Does the existence of antiphase, multistability, and order-to-order transitions depend
on scale N7 With these questions in mind, we recently conducted a human exper-
iment [35] at an intermediate scale (N = 8), such that the system is large enough
for studying its macro-level properties, yet small enough for examining micro-level
patterns. In the present work, we developed a theoretical model that successfully
captures key observations in this experiment at multiple levels of description, and at

the same time connects small-scale and large-scale coordination.
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3.2 RESULTS

3.2.1 Human coordination at intermediate scales
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Figure 3.1: Experimental setup for multiagent coordination. In the Human Firefly ex-
periment [35], eight subjects interacted simultaneously with each other via a set of touch
pads and LED arrays. In each trial, each subject was paced with a metronome prior to
interaction. The metronome assignment split the ensemble of eight into two frequency
groups of four (group A and B, colored red and blue respectively). The frequency difference
0f between group A and B were systematically manipulated to induce different grouping
behavior. See text for details.

Before getting into the model, we briefly review the mid-scale experiment and key
results [35]. In the experiment (dubbed the “Human Firefly” experiment), ensem-
bles of eight people (N = 8, total 120 subjects) spontaneously coordinated rhythmic

movements in an all-to-all network (via 8 touchpads, and 8 ring-shaped arrays of 8
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LEDs as in Figure 3.1; see Materials and Methods for details). To induce different
grouping behavior, subjects were paced with different metronomes prior to interaction
such that each ensemble was split into two frequency groups of equal size with inter-
group difference 6 f = 0, 0.3, or 0.6 Hz (referred to as levels of “diversity”), and were
asked to maintain that frequency during interaction after the metronome was turned
off. Subjects’ actual frequencies from three example trials (Figure 3.2A-C) show in-
tuitively the consequences of frequency manipulations: from (A) to (C) a supergroup

of eight gradually split into two frequency groups of four as diversity increased from

0f =0 Hz to 0.6 Hz.
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Figure 3.2: Examples of frequency dynamics and aggregated relative phase distributions
for three diversity conditions. (A-C) shows instantaneous frequency (average over four
cycles) from three trials with diversity  f = 0, 0.3, 0.6 Hz respectively. Viewed from bottom
to top, in (C), two frequency groups of four are apparent and isolated due to high intergroup
difference (low-frequency group, warm colors, paced with metronome f4 = 1.2 Hz; high-
frequency group, cold colors, paced with metronome fp = 1.8 Hz). As the two groups get
closer (B), more cross-talk occurred between them (note contacting trajectories especially
after 30s). Finally when the intergroup difference is gone (A), one supergroup of eight
formed. (D-F) show relative phase ¢ distributions aggregated from all trials for 0f =
0, 0.3, 0.6 Hz respectively (histograms computed in [0, 7), plotted in [—2m, 27| by symmetry
and periodicity). When diversity is low (D), the distribution peaks near inphase (¢ = 0) and
antiphase (¢ = ), separated by a trough near 7/2, with antiphase weaker than inphase.
The two peaks are diminished as Jf increases (E,F), but the weaker one at antiphase
becomes flat first (F).

Key results involve multiple levels of description, in terms of intergroup, intragroup
and interpersonal relations. The level of intergroup integration is defined as the
relation between intragroup and intergroup coordination (31, slope of regression lines
in Figure 3.3A; see Materials and Methods). Two frequency groups are integrated
when diversity is low or moderate (6 f = 0, 0.3Hz, blue and red lines, slope 5, > 0) and

segregated when diversity is high (6 f = 0.6 Hz, yellow line, slope ; < 0). A critical
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level of diversity demarcating the regime of integration and segregation was estimated
to be 0 f* = 0.5 Hz. At the interpersonal level, inphase and antiphase were preferred
phase relations (inphase much stronger than antiphase; distributions in Figure 3.2D-
F), especially when the diversity was very low (Figure 3.2D, peaks around ¢ = 0, 7,
in radians throughout this paper), but both were weakened by increasing diversity
(Figure 3.2EF; in episodes of strong coordination, antiphase is greatly amplified, and
much more susceptible to diversity than inphase, see [35]). Notice that subjects did
not lock into these phase relations but rather engaged and disengaged intermittently
(two persons dwell at and escape from preferred phase relations recurrently, a sign of
metastability; see Figure 3.5A red trajectory for example), reflected also as “kissing”

and “splitting” of frequency trajectories (e.g. in Figure 3.2B).
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Figure 3.3: Intergroup relations and average inter/intragroup coordination. (A) shows how
intragroup coordination relates to intergroup coordination for different levels of diversity
(0f, color-coded) in the “Human Firefly” experiment [35]. Each dot’s x- and y-coordinate
reflect the level of intragroup and intergroup coordination respectively (measured by phase-
locking value). Lines of corresponding colors are regression lines fitted for each diversity
condition (slope (; indicates the level of integration). With low and moderate diversity
(blue and red), two frequency groups are integrated (positive slopes); and with high diver-
sity (yellow), two frequency groups are segregated (negative slope). Black line (zero slope)
indicates the empirically estimated critical diversity d f*, demarcating the regimes of inte-
gration and segregation. The exact same analyses were applied to the simulated data (200
trials per diversity condition) and the results are shown in (C), which highly resemble their
counterparts in (A). (B) shows a break-down of the average level of dyadic coordination as
a function of diversity (color) and whether the dyadic relation was intragroup (left) or inter-
group (right). Intragroup coordination was reduced by the presence of intergroup diversity
(6f # 0; left red, yellow bars shorter than left blue bar); intergroup coordination dropped
rapidly with increasing d f (right three bars; error bars reflect standard errors). Results of
the same analyses on simulated data are shown in (D), which again highly resembles the

human data in (B).
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In the following sections, we present a model that captures these key experimental
observations at both macro (intergroup) and micro (interpersonal) levels of descrip-

tions.

3.2.2 A minimal experiment-based model of multiagent coordination

Our model of coordination is based on a family of N oscillators, each represented by
a single phase angle ;. We will show that a pair-wise phase coupling [12,27,66] of

the form

N N
O = w; — Z a;;sin(y; — @;) — Z bi;sin2(p; — ¢;) (3.1)

j=1 j=1
suffices to model the key features of the experimental data identified above. The left
side of this equation is the time derivative of y;, while the constant w; > 0 on the
right is the natural (i.e., uncoupled) frequency of the i*" oscillator. The coefficients

a;; > 0 and b;; > 0 are parameters that govern the strength of coupling.

The equations (3.1) include a number of well-studied models as special cases. For
instance, setting ¢ := 1 — g, dw = Wy — wy, @ := a1z + as, and 2 = bio + by for
N = 2, the difference of the two resulting equations (3.1) yields the relative phase

equation
¢ = 0w — asin ¢ — 2bsin 2¢ (3.2)

of the extended HKB model [13]. The HKB model was originally designed to describe
the dynamics of human bimanual coordination, and has since been shown to apply to
a broad variety of dyadic coordination phenomena in living systems (see [28,138] for
details). Equations (3.1) generalize the extended HKB model to N oscillators in a
straightforward way. It is quite remarkable that such a straightforward generalization
can reproduce key features of the collective rhythmic coordination among groups
of human subjects, who moreover couple to one another experimentally through a

rudimentary, visual stimulus.
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Another well-studied special case of equations (3.1) is the Kuramoto model [12],
which has b;; = 0 (and typically a;; = a, independent of ¢ and j). We will see
below, however, that the Kuramoto model cannot exhibit at least one feature of the
experimental data. Namely, the data show a secondary peak in the pairwise relative
phase of experimental subjects at antiphase, along with a major peak at inphase (see
Figure 3.2D-F above). Simulations using the Kuramoto model do not reproduce this
effect, while simulations of equations (3.1) model do (compare Figure 3.4 D-F and
G-I below). We give additional analytical support for this point by studying relevant

fixed points of both models in the Appendix B (Section B.7).

3.2.3 Weak coupling captures human behavior

Given the spatially symmetric setup of the “Human Firefly” experiment (all-to-all
network, visual presentation at equal distance to fixation point), it is reasonable to

further simplify equations (3.1) by letting a;; = @ and b;; = b (a, b > 0),
N N
Yi=w;—a Z sin ¢;; — b Z sin 2¢;; (3.3)
=1 j=1

where ¢;; = ¢;—¢; is the relative phase between oscillators ¢ and j (henceforth we use
the notation ¢;; instead of the subtraction, since relative phase is the crucial variable
for coordination [27]).

At the level of intergroup relations, model behavior (Figure 3.3C; under weak cou-
pling a = b = 0.105, which was chosen after a comprehensive study of the parameter
space, see Section B.1 in Appendix B on parameter choices) successfully captures
human behavior (Figure 3.3A) at all levels of diversity. Similar to the human ex-
periment, low diversity (Jf = 0 Hz) results in a high level of intergroup integration
in the model (blue line in Figure 3.3C slope close to 1; 5 = 0.972, ¢(199) = 66.6,
p < 0.001); high diversity (0f = 0.6 Hz) comes with intergroup segregation (yellow
line slope negative; 8; = —0.113, ¢(199) = —3.56, p < 0.001); and in between, mod-

erate diversity (0f = 0.3 Hz) is associated with partial integration (red line positive
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slope far less than 1; 5; = 0.318, ¢(199) = 4.23, p < 0.001). Here we did not estimate
the critical diversity df* the same way as for the human data (by linear interpola-
tion), since we found theoretically that the level of integration depends nonlinearly
on diversity df (see Figure B.1), and as a result the theoretical § f* is 0.4 Hz (see
Figure B.1D). This prediction can be tested in future experiments by making finer
divisions between ¢ f = 0.3 and 0.6 Hz.

In the human experiment, not only did we uncover the effect of diversity on in-
tergroup relations, but also, non-trivially, on intragroup coordination (outside affects
within, a sign of complexity). Statistically, this is shown in Figure 3.3B (three bars
on the left): with the presence of intergroup difference (6f > 0), intragroup coor-
dination was reduced (red, yellow bars significantly shorter than blue bar). This
is well captured by the model as shown in Figure 3.3D (2-way ANOVA interaction
effect, F'(2,19194) = 3416, p < 0.001; the simulated data also capture the rapid de-
cline of intergroup coordination with increasing J f in human data, shown in Figure
3.3BD, right). To see what this means dynamically, three simulated trials are shown
in Figure 3.4A-C as examples (same initial conditions and intragroup frequency dis-
persion). The phase-locked state within groups (when 0 f = 0 Hz; Figure 3.4A) is
lost and replaced by metastable coordination (intermittent convergence, marked by
black triangles in Figure 3.4BC) as soon as two groups begin to differentiate from
each other (6f = 0.3,0.6 Hz). In fact, the statistical result (Figure 3.3B, left) reflects
how two groups collaboratively increased each other’s intragroup coordination (see
Section B.3 for baseline dynamics when intergroup coupling is removed, where intra-
group coordination is always metastable, and Section B.4 in Appendix B for statistics
when intragroup variability is removed). Comparing Figure 3.4B with C, we see the
time scale of metastable convergence is also altered by intergroup difference 6 f (longer
inter-convergence interval for C) - intergroup difference changes not only the overall

level of coordination within groups, but also the patterns of coordination.
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Figure 3.4: Examples of frequency dynamics and aggregated relative phase distributions
for simulated data. (A-C) show frequency dynamics of three simulated trials (a = b = 0.105)
with the same initial phases and intragroup frequency dispersion but different intergroup
difference i.e. 6f = 0, 0.3, 0.6 Hz respectively. When intergroup differences are intro-
duced (BC), not only is intergroup interaction altered but intragroup coordination also
loses stability and becomes metastable (within-group trajectories converge at black trian-
gles and diverge afterwards). The time scale of metastable coordination also changes with
df, i.e. the inter-convergence interval was shorter for (B) than (C). (D-F) show relative
phase distributions, aggregated over 200 trials (a = b = 0.105) for each diversity condition
(6f = 0, 0.3, 0.6 respectively). At low diversity (D), there is a strong inphase peak and
a weak antiphase peak, separated by a trough near 7/2. Both peaks are diminished by
increasing diversity (EF). These features are qualitatively the same as the human experi-
ment. (G-I) show the same distributions as (D-F) but for a = 0.154 and b = 0 (i.e. the
classical Kuramoto model). There is a single peak in each distribution at inphase ¢ = 0,
and a trough at antiphase ¢ = 7.

At interpersonal level, human subjects tended to coordinate with each other
around inphase and antiphase, especially when the diversity is low (§ f = 0 Hz; Figure
3.2D, peaks around ¢ = 0, 7 separated by a trough near ¢ = 7/2); and the prefer-
ence for inphase and antiphase both diminishes as diversity increases (Jf = 0.3, 0.6,
Figure 3.2EF). These aspects are well reproduced in simulations of the equation (3.3)

(Figure 3.4D-F). Note that these model-based distributions are overall less dispersed
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than the more variable human-produced distributions (Figure 3.2D-F), likely due to

the deterministic nature of the model (i.e. no stochastic term).

3.2.4 The necessity of second-order coupling

Equation (3.3) becomes the classical Kuramoto model [12] when b = 0. We follow the
same analyses as in the previous section but now for a = 0.154 and b = 0 (see Section
B.6 in Appendix B on parameter choices). The relationship between intragroup and
intergroup coordination (Figure B.7A; 51(0Hz) = 0.974, ¢(199) = 53.2, p < 0.001;
p1(0.3Hz) = 0.292, £(199) = 4.52, p < 0.001; 51(0.6Hz) = —0.011, #(199) = —0.41,
p > 0.05) resembles the case of b # 0 (a = b = 0.105, Figure 3.3C). A difference
remains that for b = 0, 5;(0.6H z) is not significantly less than zero (p = 0.68) when

= 0. The average level of intragroup and intergroup coordination also varies with
diversity in the same way as the case of b # 0 (Figure B.7B for b = 0, interaction
effect F'(2,19194) = 3737, p < 0.001, compared to Figure 3.3D for b # 0). In short,
group-level statistical features are mostly preserved without second order coupling
(i.e. b=0).

However, this is no longer the case when it comes to interpersonal relations. The
distributions of dyadic relative phases are shown in Figure 3.4G-I. Without second
order coupling, the model does not show a preference for antiphase in any of the
three diversity conditions, thereby missing an important feature of human social co-
ordination. Analytically, we find that the coupling ratio x = 2b/a determines whether
antiphase is preferred (for the simple case of identical oscillators, in Section B.7 in
Appendix B). A critical coupling ratio . = 1 demarcates the regimes of monostability
(only all-inphase is stable for £ < 1) and multistability (any combination of inphase
and antiphase is stable for k > 1). The critical ratio is identical to the critical cou-
pling of the extended HKB model [13], where the transition between monostability

(inphase) and multistability (inphase and antiphase) occurs (equation 3.2, parameters
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in the two equations map to each other by a = @/2 and b = b). This shows further
how equation (3.3) is a natural N-dimensional generalization of the extended HKB

model, in terms of multistability and order-to-order transitions.

3.2.5 The effect of non-uniform coupling

So far, our model has captured very well experimental observations with the simple
assumption of uniform coupling. However, loosening this assumption is necessary
for understanding detailed dynamics. Here is an example from [35] (Figure 3.5A),
where coordination among three agents (1, 3, and 4, labels of locations on LED
arrays) is visualized as the dynamics of two relative phases (¢35 red, ¢34 yellow).
Agents 3 and 4 coordinated inphase persistently (10-40s yellow trajectory flat at
¢34 ~ 0), while agents 3 and 1 coordinated intermittently every time they passed by
inphase (red trajectory ¢13 becames flat, i.e. dwells, near inphase around 10, 20 and
35s). Curiously, every dwell in ¢q3 (red) was accompanied by a little bump in ¢34,
suggesting ¢34 was periodically influenced by ¢13. In the framework of our model, we

can approximate the dynamics of ¢34 from equation (3.1) by assuming ¢34 = 0 (thus

¢13 = ¢14)7

@34 = f(¢34) —|—£a31 - a41) sin ¢13 + (b31 - b41) sin 2¢131 (3-4)

-~

=:K($13)

where f(¢34) is the influence of ¢34 on itself, K (¢3) the influence of ¢35 on ¢34. From
K (¢13) we see that ¢13 has no influence on ¢34 if the coupling is completely uniform
(i.e. K(¢13) =0 if agy = aq1 and by = byy). To break the symmetry between agent 3

and 4, we “upgrade” equation (3.3) to the system

N N
=1 =1

48



where each oscillator can have its own coupling style (oscillator specific coupling
strength a; and b;). In the present case, we are interested in what happens when
az # ay for i € {1,3,4}. Two simulated trials are shown in Figure 3.5BC, using the
same initial conditions and natural frequencies estimated from the human data. The
bumps in ¢34, accompanying dwells in ¢13, are reproduced when asz > a4 (Figure
3.5B) but not when a3 = a4 (Figure 3.5C; see Section B.8 in Appendix B for more
analyses). This example shows that to understand interesting dynamic patterns in

specific trials, non-uniform coupling strength is important.
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time (s)

Figure 3.5: The effect of non-uniform coupling strength on coordination dynamics. (A)
shows the evolution of the relationship between three persons (agent 1, 3, 4, spatially
situated as in legend) in terms of two relative phases (¢13, ¢34). ¢34 (yellow) persisted at
inphase for a long time (10-37s trajectory flattened near ¢ = 0) before switching to antiphase
(40s). ¢13 (red) dwelled at inphase intermittently (flattening of trajectory around 10, 20, and
35s). Three bumps appeared in ¢34 during its long dwell at inphase (near 15, 25, 37s), which
followed the dwells in ¢;3, indicating a possible influence of ¢13 on ¢34. (B,C) show two
simulated trials with identical initial conditions and natural frequencies, estimated from the
human data. In (B), agent 3 is more “social” than agent 4 (ag > a4). More precisely, agent
3 has a much stronger coupling (a3 = 1) than all others (a; = a4 = by = bg = by = 0.105,
as in previous sections). The recurring bumps in ¢34 are nicely reproduced. In (C), agent
3 and 4 are equally “social” (a3 = a4 = 0.5525, keeping the same average in (B)). ¢34 is
virtually flat throughout the trial.

3.2.6 Metastable coordination between more than two agents

In the preceding sections, we have shown how the model captures specific experimental
observations at various levels of description. In this section, we further probe the
model’s behavior for a better theoretical understanding of metastable coordination in

the multiagent scenario (i.e. spatiotemporal metastability which few work has studied
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in detail, e.g. [33]).

First, we show how metastable coordination between three oscillators is different
from that of two. Between two oscillators (as studied in [13,64]), coordination can
be described as the dynamics of a single relative phase, which is confined to the
underlying state space S!, i.e. a circle. For sufficiently large difference between the
natural frequency of two oscillators (e.g. dw in equation 3.2), all fixed points of the
system (i.e. phase-locked solutions) are gone and a single periodic orbit emerges
covering S!, at which point the system is said to be metastable. But so long as the
system is metastable, manipulation of dw will not create any qualitative change in
the metastable dynamics — the relative phase orbit has a unique topology, identical
to that of S'. This is no longer the case when a third oscillator is added into the
system, as we will show next.

The coordination dynamics of three oscillators can be described by two phase
relations. If one relation is metastable while the other is not (i.e. phase-locked),
we may say the collective pattern is partially metastable. Since either one can be
metastable, there are at least two partially metastable patterns. More concretely,
consider a system of three oscillators (seen uncoupled in Figure 3.6 A1-3), two of
which have fixed natural frequencies of 0 and 1 Hz (red, blue lines in Figure 3.6
A1 show their uncoupled frequency dynamics, i.e. time derivatives of their absolute
phases ¢g and ;). The third one has a variable natural frequency A Hz (absolute
phase ¢,), where A € [0,1] (e.g. black line in Figure 3.6 A1 with A = 0.5). If they
are coupled (coupling strength a = b = 1 with respect to equation 3.3, which is just
small enough such that the three are never all phase-locked), two partially metastable
patterns are apparent — ¢, is only phase-locked to either ¢; (e.g. when A\ = 1, relative
phase ¢;_ = 0; seen in Figure 3.6 B1 as black completely overlaps with the oscillator
at 1 Hz on top) or ¢y (e.g. when A = 0, relative phase ¢,_o = 0; seen in Figure 3.6

C1 as black completely overlaps with the oscillator at 0 Hz at the bottom). These
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two patterns can be represented as two different loops (periodic orbits of relative
phases (¢1_x(t), dr_o(t))" with ¢t € [0,T) for an orbit of period T') on a torus S* x S*
(Figure 3.6 BC2-3) — a meridian loop (B3) and a longitudinal loop (C3) respectively.
They are topologically distinct in the sense that you cannot continuously deform
one into another (i.e. not homotopy equivalent). We can classify these two types of
patterns by a pair of winding numbers (p, ¢) denoting how many times the loop wraps
around the longitude and meridian circle respectively, i.e. (0,1) for (B3) and (1,0)
for (C3). From this topological classification of metastable patterns, an interesting
problem arises: how the transition between topologically distinct patterns (from C3
to B3) occurs under a continuous change of A (from 0 to 1), or what types of, if any,

metastable pattern exist in between. We address this question next by varying .
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Figure 3.6: Basic forms of triadic metastable coordination. (A1-3) shows the behavior
of three uncoupled oscillators (a = b = 0) with natural frequency 0, A = 0.5, and 1 Hz and
initial phase ; = 0 for all ’s, as the dynamics of instantaneous frequency (red, black, blue
lines in A1; all are constant at their natural frequencies due to the lack of interaction) and
the corresponding periodic orbit of relative phases as a loop on a torus (A2-3; the space in A2
has periodic boundaries, i.e. {¢1-x = 0} ~ {¢1-x = 27} and {pyo = 0} ~ {dr—0 = 27};
A3 is simply a rolled-up version of A2 with the origin in front to better visualize the topology
and continuity, but the exact distance in A2 is not preserved). Here two relative phases
¢1_x and ¢y_¢ increase linearly with time at the same rate because A is in equal distance
with the other two oscillators, resulting in a loop of type (1,1) on the torus (see text).
(B1-3) and (C1-3) show corresponding information regarding three coupled oscillators with
a=>b=1, A=1(B13) and A = 0 (C1-3). For A = 1, the black oscillator (in B1)
is completely locked to the oscillator at 1 Hz while coordinating metastably with the red
oscillator (trajectories have minimal distance when two oscillators dwell at certain phase
relations), with corresponding relative phase orbit of type (0, 1) (B2-3); for A = 0, the black
oscillator is locked to the oscillator at 0 Hz (C1), with corresponding relative phase orbit of
type (1,0) (C2-3).

For most values of A, the relative phase orbit still belongs to the two types above

(for A € [0.52,1], type (0, 1), see Figure 3.6 B2-3 and 3.7 A2-3; for A € [0,0.48], type
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(1,0), see Figure 3.6 C2-3 and 3.7 E2-3) despite the deformation and a change in
period (seen as fewer cycles in Figure 3.7 A1 and E1 than in Figure 3.6 B1 and C1).
Near A = 0.5 however, a purely metastable pattern appears, where ¢, is not phase-
locked to either g or ¢ (i.e. both relations ¢;_) and @,_o are metastable; Figure
3.7 C1-3 for A = 0.5). The topology of the corresponding relative phase orbit is of
type (1,1) (Figure 3.7 C2-3; one may notice the similarity to Figure 3.6 A2-3. The
difference is that only the orbit in Figure 3.7 C2-3 is structurally stable. See Appendix
B.9), which is not homotopic to the pattern of either type (0,1) (A2-3) or (1,0) (E2-3)
studied above, but rather the composition of both (correspondingly, the types follow
the relation (1,1) = (0,1) + (1,0)). One would immediately ask inductively, whether
there is yet another pattern of type (1,2) = (0,1) + (1, 1) for some value of A between
0.52 and 0.5. Such a pattern can indeed be found around A = 0.5184 as shown in
Figure 3.7 B2-3, which can be easily seen as a composition of (A2-3) and (C2-3) (and
symmetrically, for A = 0.4816 shown in Figure 3.7 D2-3, a composition of C2-3 and
E2-3; see Figure B.10 for more examples of composition). While a formal proof is
beyond the scope of the present text, it is reasonable to conjecture that for A € (0, 1),
there are infinitely many purely metastable patterns as structurally stable periodic
orbits in S! x S with distinct pairs of winding numbers (p, ¢) € ZT x ZT, belonging
to the fundamental group of S' x S*, generated by partially metastable patterns of
type (0,1) and (1,0) (Figure 3.6 B2-3 and C2-3). This amounts to showing that the
Poincaré map associated with this three-oscillator system depends continuously on A,
which connects the conjecture to known results on the rotation number of circle maps
(see [139]). In any case, we see multiple types of purely metastable patterns packed
within a narrow range of parameter values A € [0.48,0.52], where the three oscillators
are nearly equidistant to each other in natural frequency (how narrow the range is
depends on the coupling strength — greater coupling makes the range narrower until

the system is no longer metastable; see Appendix B.9). This ability to reach various
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complex metastable patterns under small parameter change is in stark contrast with

metastable coordination between two oscillators — more is different [140].
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Figure 3.7: Extended forms of triadic metastable coordination. Here we extend the
examples given in Figure 3.6 B1-3 and C1-3 with additional values of A (all other parameters
are the same). Within a small parameter range A € [0.48,0.52], there are at least five distinct
types of relative phase orbits that are not homotopic to each other, i.e. (0, 1) for A2-3, (1,2)
for B2-3, (1,1) for C2-3, (2,1) for D2-3, and (1,0) for E2-3, with corresponding frequency
dynamics in A1-E1.
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So far we have based our classification on winding numbers, which only give a
rough description of patterns. On the other hand, frequency dynamics (Figure 3.7 Al-
E1) reflects not only the winding numbers but also additional information about the
temporal unfolding of each pattern. Winding numbers are reflected as the clustering of
the frequency curves and the relative size of holes between curves (since the integral of
frequency difference is exactly the change in relative phase). Frequency dynamics also
shows the order in which simple patterns (e.g. Figure 3.7 A1l and C1) are composed
into a more complex one (B1) (in Figure 3.7, one cycle in B1 is roughly adding a cycle
in Al in front of a cycle from C1; from Figure B.10, one can see more clearly that
this order is not arbitrary) and the overall duration of a pattern (see the difference
between Figure 3.6 A1l and 3.7 C1). Thus, metastable patterns can be studied in more
details as the geometry of 2D graphs composed of frequency trajectories. This is very
convenient when we study higher-dimensional metastable coordination that cannot
be visualized on a torus (we devise a computational method that takes advantage of

this point in the next chapter). An example is shown below.

E 2
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Figure 3.8: An example of eight-agent metastable coordination, with coupling a = b =
0.15, average natural frequency w = 1.5 Hz, and difference between adjacent oscillators
dwit+1,; = 0.075 Hz, shown as frequency trajectories. One period of the metastable pattern
is enlarged in the black box under the time axis. The winding numbers of relative phases
between adjacent oscillators is (1,1,1,1,1,1,1).
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Figure 3.8 shows a metastable pattern (repeated for five cycles) formed by eight
oscillators as a complex shape composed of frequency trajectories. Trajectories fan
out separately at the beginning of each cycle but return as two clusters at the end, and
in between form various organizations. The complexity of this pattern cannot be fully
described by the winding numbers alone, i.e. (1,1,1,1,1,1,1). In fact, the winding
numbers only provide a geometric constraint on the area of empty space between
curves. While a systematic geometric study of multiagent metastable patterns has
to be left to the future, this example gives a taste of how complex and, nevertheless,

ordered dynamic patterns can be generated without synchronization.

3.3 DISCUSSION

The present model is a natural generalization of the extended HKB (for N = 2) [13]
to higher dimensions (arbitrary N) and an extension of the classical Kuramoto model
(for large ) [12] to include second-order coupling, thereby reconciling small-scale and
large-scale theories of coordination. The model successfully captures key features of
multiagent coordination in mid-scale ensembles at multiple levels of description [35].
Similar to the HKB model [27], second-order coupling is demanded by the experimen-
tal observation of antiphase (and associated multistability) but now in eight-person
coordination; and similar to the extended HKB [13], the model captures how in-
creasing frequency difference 0 f weakens inphase and antiphase patterns, leading to
segregation but now between two groups instead of two persons. This cross-scale
consistency of experimental observations may be explained by the scale-invariant
nature of the critical coupling ratio k. = 1, the transition point between monosta-
bility (only an all-inphase state) and multistability (states containing any number of
antiphase patterns). The scale invariance suggests that experimental methods and
conclusions for small-scale coordination dynamics have implications for multistability,

phase transitions, and metastability at larger scales, and enables a unified approach
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to coordination that meshes statistical mechanics and nonlinear dynamics.

Another generalization of the classical Kuramoto model by Hong and Strogatz
[141] also allows for antiphase-containing patterns (“w-state”) by letting the sign of
the first order coupling (a) be positive for some oscillators (“the conformists”) and
negative for others (“the contrarians”). However, in contrast to our model, antiphase
induced this way does not come with multistability, nor the associated order-to-order
transitions observed in human rhythmic coordination [28,142]. The second-order
coupling in our model allows each individual to be both a conformist and a contrarian
but possibly to different degrees [37]. The simple addition of a second stable state
may not seem like a big plus at N = 2 (2 stable states), but it rapidly expands the

2N-1 gtable states for

system’s behavioral repertoire as the system becomes larger (
N oscillators; with only first-order coupling, the system always has 1V~! = 1 stable
state, and therefore does not benefit from scaling up). This benefit of scale may be
how micro-level multistability contributes to the functional complexity of biological
systems [32,143].

Besides the multistability of micro patterns (a general feature endowed by higher-
order coupling [20,22,144]), the addition of second-order coupling also affects macro-
level order in terms of critical scaling (see [72] for a summary), i.e. for coupling
strength K > K. near K., the order parameter || H|| (norm of the order function [145])
is proportional to (K — K.)?, with 3 = 1/2 for the classical Kuramoto model and
f = 1 when second-order coupling is added [146,147]|. For complex biological systems
like the brain which seem to operate near criticality [148], these two types of scaling
behavior have very different functional implications. When modeling such complex
systems, one may want to have a closer examination or re-examination of empirical
data of large-scale coordination near the critical point, and preferably at multiple

levels of description [115].

Building upon the mathematical context of stationary solutions, we have to recall
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that spontaneous social coordination is highly metastable (e.g. Figure 3.2A-C) [35],
captured by the model when frequency diversity is combined with weak coupling
(e.g. Figure B.1A, in contrast to BC under stronger coupling). Individuals did not
become phase-locked in long run, but dwell temporarily when passing by a preferred
relation (inphase and antiphase) [32,33] (e.g. red trajectory in Figure 3.5A; note
here stability analysis of stationary solutions provides landmarks for characterizing
metastable patterns). For N > 2, an ensemble can visit different spatial organizations
sequentially (see examples of human behavior in [35], model behavior Figure B.10),
forming complex patterns that extend in both space and time (e.g. Figure 3.8).
Remarkably, the kind of order present in metastable patterns (as demonstrated in
Sections 3.2.6 and B.9) are achieved without unison (i.e. synchronization) or reducing
the behavioral complexity of individual agents. To the contrary, individual oscillators
gain complex behaviors by participating in metastable collective patterns, who are
rather boring when left alone (see contrast between Figure 3.6A1 and Figure 3.7B1).
For these reasons, metastability makes a viable mechanism for encoding complex
information as real-world complex living systems do (e.g. a brain) [28,33, 115,131,
149-151]. In the brain, highly coherent patterns like collective synchronization can
be less functional and even pathological [152,153]. Our results call for more attention
to these not-quite coherent but empirically relevant patterns of coordination.

Key experimental observations are captured by our model under the assumptions
of uniform coupling (everyone couples with each other in the same way) and constant
natural frequency. However these assumptions may be loosened to reflect detailed
dynamics. For example, introducing individual differences in coupling style (equation
(3.5)) gives more room to explain how one metastable phase relation may exert strong
influence on another (Figure 3.5A). Long time-scale dynamics observed in the experi-
ment (see Section B.8 in Appendix B) may also be explained by frequency adaptation,

which has been observed in dyadic social coordination [154]. A systematic study of
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the consequences of asymmetric coupling and frequency adaptation on coordination
among multiple agents seems worthy of further experimental and theoretical explo-
ration.

To conclude, we proposed a model that captured key features of human social co-
ordination in mid-sized ensembles [35], and at the same time connected well-studied
large-scale and small-scale models of coordination. The model provides mechanis-
tic explanations of the statistics and dynamics already observed, as well as a road
map for future empirical exploration. As an experimental-theoretical platform for
understanding biological coordination, the value of the middle scale should not be
underestimated, nor the importance of examining coordination phenomena at multi-

ple levels of description.

3.4 MATERIALS AND METHODS

3.4.1 Methods of the human experiment

A complete description of the methods of the “Human Firefly” experiment can be
found in [35]. Here we only recapitulate a few points necessary for understanding the
present paper. For an ensemble of eight people (120 subjects in total), each subject
was equipped with a touchpad that recorded his/her tapping behavior as a series of
zeros and ones at 250 Hz (1=touch, O=detach), and an array of eight LEDs arranged
in a ring, each of which flashed when a particular subject tapped. For each trial,
subjects were first paced with metronomes for 10s, later interacting with each other
for 50s (instructed to maintain metronome frequency while looking at others’ taps
as flashes of the LEDs). Between the pacing and interaction period, there was a 3s
transient, during which subjects tapped by themselves. Tapping frequency during
this transient has been used to estimate the “natural frequencies” of the subjects
(see Estimating the distribution of natural frequencies). During pacing, four subjects

received the same metronome (same frequency, random initial phase), and the other
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four another metronome. The metronome assignments created two frequency groups
(say, group A and B) with intergroup difference 6f = |f4 — fg| = 0, 0.3, or 0.6 Hz
(same average (fa + fg)/2 = 1.5 Hz). From a single subject’s perspective, the LED
array looks like the legend of Figure 3.2A (all LEDs emit white light; color-coding
only for labeling locations): a subject always saw his/her own taps as the flashes
of LED 1, members of his/her own frequency group LED 2-4, and members of the
other group LED 5-8 (members from two groups were interleaved to preserve spatial
symmetry).

From the tapping data (rectangular waves of zeros and ones), we obtained the
onset of each tap, from which we calculated instantaneous frequency and phase. In-
stantaneous frequency is the reciprocal of the interval between two consecutive taps.
Phase () is calculated by assigning the onset of the nth tap phase 2w(n — 1), then

interpolating the phase between onsets with a cubic spline.

3.4.2 Estimating the distribution of natural frequencies

Human subjects have variable capability to match the metronome frequency and
maintain it, which in turn affects how they coordinate. To reflect this kind of vari-
ability in the simulations, the oscillators’ natural frequencies were drawn from a prob-
ability distribution around the “metronome frequency” (central frequencies f4 and
fB for groups A and B). To estimate this distribution from human data, we first
approximated the “natural frequency” of each subject in each trial with the average
tapping frequency during the transient between pacing and interaction periods (see
Methods of the human experiment), and subtracted from it the metronome frequency
(see blue histogram in Figure B.2 from the “Human Firefly” experiment [35]). We
then estimated the distribution non-parametrically, with a kernel density estimator

in the form of
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Px) = %Z:K(x;x) (3.6)

I
2

e
2T

(256 trials x 8 subjects) from the experiment. We choose the bandwidth h = 0.0219,

where the Kernel Smoothing Function is Normal, K(y) = . Here n = 2048

which is optimal for a normal density function according to [155],

- (%)”‘l (37)

where o is the measure of dispersion, estimated by

¢ = median{|y; — median{y;}|}/0.6745 (3.8)
where y;’s are samples [156]. The result of the estimation is shown in Figure B.2 (red
curve).

3.4.3 Phase-locking value and level of integration

The (short-windowed) phase-locking value (PLV) between two oscillators (say x and

y) during a trial is defined as

w M
PLV,, — % 3 % mZ:l exp(ichay[(w — 1)M + m)) (3.9)

w=1
where ¢, = ¢, — ¢y, W is the number of windows which each ¢ trajectory is split
into, and M is number of samples in each window (in the present study, W = 16 and

M = 750, same as [35]).
Intragroup PLV (PLV44) is defined as

PLViira = ((";”) + (|§’))_1( > PLViy+ > PLVW> (3.10)

z,yc€A r,yeB
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where A and B are two frequency groups of four oscillators, corresponding to the
design of the “Human Firefly” experiment [35], A = {1,2,3,4}, B = {5,6,7,8}, and
4] = |B| = 4.

Intergroup PLV (PLVye,) is defined as

PLVipter = !AH Z PLV,,. (3.11)

a:eA yEB
In both the human and simulated data, comparisons of PLV;,., and PLVj,;,., for
different levels of § f were done using two-way ANOVA with Type III Sums of Squares,
and Tukey Honest Significant Difference tests for post-hoc comparisons (shown in
Figure 3.3BD).

The level of integration between two frequency groups is measured by the re-
lationship between intragroup coordination (measured by PLVj..,) and intergroup
coordination (measured by PLVju..). The groups are said to be integrated if intra-
group coordination is positively related to intergroup coordination, and segregated
if negatively related. Quantitatively, for each combination of intergroup difference
df and coupling strength a (assuming a = b for our model, assuming b = 0 for the

classical Kuramoto model), we use linear regression

PLVSLS = PP 4 pr O PLVOIG + error (3.12)

inter,k intra,k

where PLV,Sff ) is the inter /intra-group PLV for the kth trial simulated with the

(5
$9) is the measure of

parameter pair (0f,a), and the slope of the regression line Bl
level of integration between groups. If 5; > 0, the groups may be said to be integrated;
if 51 < 0, segregated. The set {(Jf, a)\ﬂf(sf’a) = 0} is the critical boundary between

the domains of integration and segregation.
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3.4.4 Method of simulation

All simulations were done using the Runge-Kutta 4th-order integration scheme, with
a fixed time step At = 0.004 for duration 7" = 50 (matching the sampling interval and
the duration of interaction period of the human experiment [35]; second may be used
as unit), i.e. for system X = f(X), with initial condition X (0) = Xy, the (n + 1)th

sample of the numeric solution can be solved recursively

X[n + 1] = X[n] + é(k’l + 2k2 + 2/'63 + k’4) (313)
where

ky = At f(X[n)) (3.14)

ks = At f(X[n] + ks /2) (3.16)

The solver was implemented in CUDA C++, ran on a NVIDIA graphics processing
unit, solving every 200 trials in parallel for each parameter pair (§f,a). For each
trial, initial phases were drawn randomly from a uniform distribution and natural
frequencies the distribution defined by equation (3.7). Here 200 trials are used per
condition, greater than that of the human experiment [35] to obtain a more accurate

estimate of the mean.
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CHAPTER 4
TOPOLOGICAL ANALYSIS OF MULTTAGENT METASTABLE
COORDINATION

In the preceding chapters, statistical analyses of the Human Firefly experiment [35]
have primarily been time-independent, although we have complemented these statis-
tical results with example dynamics. This is in part due to a lack of well-suited tools
for characterizing complex spatiotemporal patterns and detecting pattern switching in
high-dimensional nonlinear dynamical systems. Regarding coupled oscillators, com-
plex spatiotemporal patterns emerge during metastable coordination between mul-
tiple agents (i.e. agents coordinate intermittently with each other at certain phase
relations; see Sections 2.2.1 and 3.2.6). In contrast to dyadic metastable coordina-
tion, whose spatiotemporal scale is unique for fixed boundary conditions, multiagent
metastable coordination allows different spatial and temporal scales to coexist, due
to the addition of spatial components (see Section 3.2.6). Multiagent metastable pat-
terns are thus unlikely to be distinguished by a single scalar at a particular level of
description (e.g. one single order parameter at the statistical level). On the other
hand, because the state space is high-dimensional and often sparsely covered by data,
it is also unlikely to find structures in the dynamics by taking into account every
micro-level detail. In other words, some statistics or dimensionality reduction has to
be done. Here we explore the utility of tools from computational algebraic topology
for such (nonlinear) dimensionality reduction. With these tools, it is possible to keep
track of topological features in the coordination patterns instead of the state variables
themselves.

In the following sections, we center our discussion around two examples of single
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trial dynamics reported in [35] for proof of concept. In Section 4.1, the original dy-
namics is given and the utility of traditional state-based recurrence plots is discussed.
In Section 4.2, a topology-based method is introduced for detecting structures in the
dynamics. The results of applying this topology-based method on the examples are

shown in Section 4.3 and discussed in Section 4.4.

4.1 EXAMPLES OF COORDINATION DYNAMICS

In this section, we show the original dynamics of two example trials — one involves
three interacting agents, the other eight — from the Human Firefly experiment [35]
(also see Chapter 2). By contrasting these two examples, we want to demonstrate
what problems arise with traditional methods when the number and diversity of
agents are increased in the coordination dynamics.

We begin with the three-agent example (Figure 4.1), which is easily interpretable
visually. In Figure 4.1A, coordination among three agents (1, 3, 4) are shown in terms
of two phase relations (1-3 magenta, and 3-4 orange). From 10s to 40s, the system
visited recurrently an all-inphase pattern (marked by 3 black triangles; between the
triangles, only 3-4 are inphase, with agent 1 wrapping), before switching to an inphase-
antiphase pattern around 40s (1-3 inphase, 3-4 antiphase in Figure 4.1A; due to
a sudden slowing down of agent 3, orange trajectory around 40s in Figure 4.1B;
frequency is the time derivative the phase). The ease of interpretation comes from
the facts that the number of interacting agents is small (low-dimensionality) and that
they are close in frequency (Figure 4.1B), as a result of which their phase coordination

occurs on visually comparable time scales.
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Figure 4.1: An example of triadic coordination dynamics. Coordination among three
agents (labeled as 1, 3, and 4) is shown as the dynamics of two pair-wise relative phases
(A) and three instantaneous frequency trajectories (B). Around 10s, three agents formed an
all-inphase relation (¢13 ~ ¢34 =~ 0 rad) for a few seconds, marked by a black triangle on
the left in (A). This pattern recurred intermittently two more times (middle, right triangle
in A), which ended when pair 3-4 switched to antiphase (40-48s, orange trajectory ¢34 ~ 7
rad). Both relative phase trajectories (A) evolve on a slow time scale because the frequency
of these three agents are very close (B).

This ease of analysis is lost when more interacting agents and frequency diversity
are involved, as illustrated in the eight-agent example (Figure 4.2). The dynamics
of pairwise relative phases (Figure 4.2A) is much less intelligible now that they are
evolving at very different time scales, e.g. slow dynamics for pairs 3-2, 5-7, and 6-
8 (thickened trajectories, mostly horizontal, reflecting strong phase coordination) in
contrast to fast dynamics for other pairs (thin trajectories, mostly wrapping, i.e. with
a steep slope). It is also not clear how these multiple phase relations constrain each
other in forming higher-level structures. The frequency dynamics (Figure 4.2B) is
more informative regarding the overall trend in the organization (e.g. eight agents
were separated into two frequency groups at the beginning, coded in warm vs. cold
colors, and became entangled at the end), but not much about how phase relations

formed or changed in relation to the overall trend. This kind of multiagent dynamics
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involving multiple spatiotemporal scales requires additional computational tools for

characterizing coordination patterns and detecting pattern transitions.
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Figure 4.2: An example of eight-agent coordination dynamics shown as seven pair-wise
relative phases (A) and eight instantaneous frequency trajectories (B). In (A), slowly varying
phase relations are shown as thick lines (orange trajectory 3-2, green 5-7, cyan 6-8), whereas
fast varying phase relations are shown as thin lines (with much steeper slopes than the thick
lines). In (B), the corresponding frequency trajectories indicate that the frequency diversity
is much greater than in Figure 4.1B. The ensemble of eight started with two frequency groups
(under the experimental condition of intergroup difference § f = 0.6 Hz), one in warm colors
(1, 2, 3, 4) and one in cold colors (5, 6, 7, 8). But toward the end of the trial, members
from the two groups begin to mingle.
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Figure 4.3: Recurrence plots of relative phase dynamics. (A) shows the recurrence of
phase relations among the three agents (the state variable is a vector with 2 relative phases
shown in Figure 4.1A as components) and (B) that of the eight agents (the state variable
is a vector with 7 relative phases in Figure 4.2A as components).

Recurrence plot [157,158] is a powerful tool for visualizing and analyzing patterns
of nonlinear dynamical systems, especially when the state space itself is too high-
dimensional to visualize. Rather than showing the state variable per se, it shows the
relation between states at different points in time, e.g. as a distance matrix, from
which one can infer how frequently a system visit different points in the state space.
In Figure 4.3AB, we show the recurrence plots of the two examples above in terms of

the state variable ¢(t), whose components are relative phases shown in Figure 4.1A

and 4.2A respectively (the components of the distance matrices are defined as

—

div iy = W (6(t1) = 6(t2)) (4.1)

where function W wraps each component to the interval (—m, 7] and || - || is the
Ly-norm). The recurrence of relative phases clearly captures the structure of the
triadic coordination (Figure 4.3A; a 3-by-3 grid between 10 and 40s, reflecting the
main recurrent pattern; the blocks before 10s and after 40s reflect two other pat-
terns), but does not reveal much structure in the eight-agent case (Figure 4.3B). This
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illustrates that conventional recurrence plots which work for low-dimensional coordi-
nation dynamics may not work well for high-dimensional dynamics involving multiple
spatiotemporal scales. In order to shed more light on the eight-agent example, we
next present a method for constructing a new type of recurrence plot, which quantifies
the recurrence of topological features (e.g. connected components and loops) in the

coordination patterns across multiple scales.

4.2 METHOD OF TOPOLOGICAL ANALYSIS

As shown in Section 3.2.6, multiagent metastable patterns can be classified by their
topological and geometric features. The method presented hereafter aims to identify
changes of topological features in multiagent coordination patterns as a way to detect
phase transitions. To do so, we need to first transform the original data into a
sequence of point clouds, each representing the coordination pattern at a particular
time (Section 4.2.1), then compute the topological portraits (i.e. persistent homology)

of each point cloud and compare these portraits across time (Section 4.2.2).

4.2.1 Coordination patterns as point clouds

For a point cloud to represent a coordination pattern, the distance between points has
to capture essential aspects of coordination between agents. The behavioral dynamics
of N agents was initially represented as N time series of absolute phases (; for integer
0 < i < N). However, a small distance in phase (i.e. relative phase near zero) does not
necessarily imply coordination (phases may coincide frequently between oscillators of
very different natural frequencies, i.e. even a broken clock is right twice a day), and
conversely, coordination does not necessarily imply small distance in phase (since

coordination can happen at m or other relative phases as shown in Chapter 2 and 3).

71



N
N wn

frequency (Hz)
&

e @
= N

se (cycle)

Figure 4.4: Decomposition of absolute phase dynamics for the eight-agent example. The
absolute phase of each agent is decomposed into to a slowly varying frequency component
(A) and a fast varying residual phase (B) (this type of decomposition is well-known in
coupled oscillator theory, see e.g. [159]).

A more reasonable way to represent coordination patterns is by instantaneous
frequency (Figure 4.1B, 4.2B) — the time derivative of absolute phase. Whenever
there is phase coordination, the derivative of the relative phase must be small (e.g.
¢ trajectories flattening in Figure 4.1A), hence the instantaneous frequency of two
agents approaches each other. During sudden transitions, however, instantaneous
frequencies may oscillate with a high amplitude, approaching each other without
coordinating. To resolve this ambiguity (i.e. closeness in instantaneous frequency due
to actual coordination or fluctuations near a transition), we decompose the absolute
phase of each agent into a slowly varying frequency component (e.g. Figure 4.4A
for the eight-agent example) and a fast varying residual phase (phase for short in
Figure 4.4B) without losing any information (i.e. absolute phase can be restored by
¢ = 27 (frequency(t) - t + phase(t))). To do so, we first fit a piece-wise cubic spline
() to the absolute phase (¢) (least-square, using splinefit in Matlab with robust
fitting parameter § = 0.5 [160]). Knots of the spline were chosen at 2s intervals,

based on the observation that dyadic phase coordination mostly exceeded 2s (about
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87%, see distribution in Fig B of S1 File in [35]). The slow component (frequency) is
the derivative of ¢ and the fast component (residual phase) is ¢ — .

Finally, time series of these two components are segmented into 2s windows (con-
secutive windows overlap by 1s) and the coordination pattern around time ¢ (s) is
represented as a point cloud in 3-dimensional space — a set of M points whose coor-
dinates correspond to local time, residual phase, and frequency respectively (we will
see an example later in Figure 4.7A, where each point in the point cloud is shown as
a small ball; M = 160 for this study, containing 20 time points for each of the eight
agents, centered at 0.1s intervals), i.e. X(t) = {x1(t), -, x;i(t), - ,zp(t)} where
z(t) € Uy = I; x S' x RT with I; = [t — w/2,t + w/2] for a coordination pattern
sampled at time ¢ (s) in a window of w = 2 (s). To later compute the topological
features associated with each point cloud X (), we need to equip the space U; with a

metric, i.e. the distance between any point a = (ay, as,a3)T and b = (by, b, b3)T € Uy,

d(a,b) = ||(a1 — by, W(ag — b2),as — bs)7|| (4.2)
where

a la| <0.5
Wi(a) = : (4.3)

1 —a otherwise
Here the three dimensions of U; have different units, so in principle, one can rescale
each dimension by modifying the metric. Nevertheless, they are not independent, i.e.
[second][cycle][cycle/second], thus cannot be scaled arbitrarily. The most natural
choice is to have no scaling, which is adopted in the present study.

In general, one may customize the representation based on the nature of agent
behavior (e.g. rhythmic or non-rhythmic) and the type of coordination of interest (e.g.
phase coordination in the present case). But as long as a sequence of point clouds are
properly constructed to reflect the patterns of interest, the following section provides

a potential method to reveal structures in the dynamics via topological data analysis.
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4.2.2 Multiscale topological portraits and their dynamics

In this section, we show how to compute topological portraits for each coordination
pattern and to study the dynamics of such portraits. The goal is to detect sudden
topological transitions in the coordination patterns, allowing us to return to the
original time series to study the nature of such transitions. Persistent homology is
the basis of our analyses. We will first give an intuitive description of what persistent
homology is and why it is useful for understanding complex metastable coordination,
before filling in with necessary technical details (for a formal account of homology,
see [161], and persistent homology, see [162-164]).

Homology captures fundamental topological features of a structure like connected
components, loops, cavities, and their higher-dimensional analogues (“holes” of dif-
ferent dimensions). Persistent homology keeps track of these features across scales.
It was initially conceived to distinguish the correct topological features of a sampled
structure (e.g. the number of connected components and loops of a torus) from noise,
since correct features are more persistent across scales [165]. In the present study,
we are interested in multiscale coordinative structures, where the set of “correct” fea-
tures may vary with scale. A figurative example is given in Figure 4.5, which can be
seen as a structure of 19 connected components and 19 loops (from 19 A’s) at one
scale, or 1 connected component and 2 loops (from 1 B) at a grosser scale (commonly
used to study human local/global perception [166]). The point is not to determine
whether one set of features is more correct than the other, but rather to combine
these two levels of description to obtain a more complete picture of the structure. As
for metastable coordination patterns (as constructed per Section 4.2.1), agents form
(approximately) connected components during phase coordination and form loops
due to the recurrent nature of metastable coordination (see behavior of agent 2, 3, 4
in Figure 4.4A) — features that can be suitably described by homology. Moreover, as

discussed in Section 4.1 and previous chapters, multiagent metastable patterns pos-
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sess interesting features across multiple spatiotemporal scales, which maybe elusive

to traditional tools but can be captured by the persistence of homological features.

AAAA
A

A
AAp

A
A AAR

Figure 4.5: A letter B made up of many A’s. Topologically, a “A” is one connected
component with one loop and a “B” is one connected component with two loops. At a fine
scale, this figure may be said to have 19 connected components and 19 loops; or at a gross
scale, it may be said to have 1 connected component and 2 loops. A complete description
of this figure needs to embrace both scales.
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Figure 4.6: Simplices and a simplicial complex. Simplices are elementary geometric objects
of different dimensionality, which can be combined into more complex structures, i.e. sim-
plicial complexes. A k-simplex can be thought of as a k-dimensional triangle, determined by
its (k+1) vertices. For example, a 2-simplex is a conventional triangle, determined by three
vertices [1, 2, x3], a O-simplex a vertex determined by itself [x1], and a 1-simplex an edge
determined by two vertices [z1,z2]. A simplicial complex therefore can be described com-
binatorially as a set of vertices plus a collection of its subsets (higher-dimensional simplices
connecting those vertices).

A coordination pattern (point cloud) X = {xy, -+, 2y} measured at a specific
scale € refers to a union of balls centered at each point in X (e.g. Figure 4.7A-C), i.e.
X = Uf\il Be/s(z;). Our goal is to identify independent homological features (“holes”)
in X, and record how they vary (e.g. emerge or disappear) with scale e (diameter
of balls). To compute these features algebraically, we first need to triangulate the

structure X, into a simplicial complex. The building blocks of a simplicial complex
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are simplices, which can be thought of as generalized triangles (Figure 4.6), i.e. a k-
simplex is a k-dimensional triangle defined by its (k+ 1) vertices. A familiar example
is a network, which is a simplicial complex containing only 0- and 1-simplices (i.e.
vertices and edges). In the present study, we construct the Rips complez R.(X) [167]
for each pattern X at scale e. R.(X) is an abstract simplicial complex consisting of all
points in X as its vertices and any k-simplex whose vertices are within e distance with
each other (distance as defined in equation 4.2). R.(X) approximates the topological
structure of X, which is less accurate than its topologically faithful counterparts (e.g.
a Cech complex [168]), but much more economical computationally and thus adopted
in the present method (see [169] regarding how Rips and Cech complexes are related).

Now our task amounts to finding the “holes” in R.(X). A hole is simply some
empty space surrounded by a closed chain of geometrical elements. In other words,
a k-dimensional hole can be identified by a cycle formed by a chain of k-simplices
(or a k-cycle) that is not the boundary of any (k + 1)-simplex. To compute these
holes algebraically, we represent a simplicial complex as a sequence of chain groups

C (chains generated by k-simplices of R.(X), or k-chains),
"'Ok+1MCkai)Ck_lﬁ"'—)Cb%Olgl—)Oogo—)O (44)

where a boundary operator Oy, maps (k+ 1)-simplices to their boundaries, which are
k-cycles that do not enclose any hole. Any k-cycle, say 7, per se has no boundary,
i.e. Oy = 0. To find the holes, one simply “removes” the boundaries (image of Oy41)

from the collection of all cycles (kernel of dy),
Hk = ker 6k/ Im 8k+1 (45)

where Hj, is the k" homology group of the simplicial complex (or to be scale-specific,

Hf of R(X)) and its generators capture independent k-dimensional holes.
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Figure 4.7: Persistence of topological features. (A-C) shows a coordination pattern (point
cloud) represented at three different scales ¢, i.e. a union of balls with diameter ¢ = 0.1 (A),
0.2 (B), or 0.5 (C) centered at each point. The 0/ and 1% persistent homology (connected
components and loops respectively) of this point cloud is shown in (D,E) as barcodes and
in (F,G) as persistence landscapes. In (D,E), each horizontal bar represents a connected
component (D) or loop (E), whose left (right) end indicates its birth (death) scale. Right
arrow in (D) indicates that this component never dies (one connected component remains
at any scale). (F,G) summarize the same information as a sequence of landscape functions
(M), reflecting the most to least prominent homological features across scales (blue to green
lines are the five largest landscape functions).

Persistent homology keeps track of each independent k-dimensional hole, which
may emerge at any scale, throughout its life span across scales. It concerns a family

of simplicial complexes R,, (equation 4.6), capturing the topology of pattern X from
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finer to grosser scales (0 < ¢; < €;41 for any index 0 <1i < P — 1),

R, (X) CR,(X) C---CR,,_,(X) CR.,(X) CR.,,(X)C---CR
(4.6)
{epy By L {0y So{opy Biepny — - e
(4.7)
each associated with a sequence of chain groups {C}'} (equation 4.7). Here the sim-
plicial complex and associated chain groups capturing X at a finer scale are included
in those of a grosser scale, captured by the inclusion maps f*’s. Importantly, these
inclusion maps help to associate the holes (or non-bounding cycles) in the complexes
across scales. Each independent k-dimensional hole can then be represented as an
interval (e, €5), where ¢, is the scale at which a hole emerges, i.e. its birth scale, and
€4 the scale at which it was filled in, i.e. its death scale. The life span €5 — ¢, indicates
how persistent the hole is across scales (not to be confused with persistence over time,
e.g. metastable dwells). With this interval representation, we can visualize these k'
homological features across scales as barcodes [169] (Figure 4.7D and E shows the
persistence of generators of the 0" and 1 homology groups Hy and H; respectively,
capturing connected components and loops across scales). The set of all intervals
constitutes a multiscale topological portrait of a coordination pattern X. Using the
software Perseus developed by Nanda [170], we compute such topological portraits
(0™ and 1°! persistent homology) for each pattern X (¢) (constructed as described in
Section 4.2.1) for t =2,3,--- ,48.

As mentioned at the beginning of this section, our end goal is to study the dy-
namics of such topological portraits in order to identify transitions in coordination
patterns. This requires us to define a measure of distance between any two topo-
logical portraits. In the present study, we use persistence landscape distance as a
metric, considering its low computation time and potential for statistical use [171].

Persistence landscapes [172] translate a set of intervals {(el(f), eg)) M into a sequence
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of piecewise-linear landscape functions {\W}E . Intervals are first used to construct

a sequence of tent functions

(

0 € ¢ (&, €q)

file)=Se—¢ cc (€p, 2] (4.8)

2

%Jr_ed’ed)

€g—€ €€ (%3

(
fori=1,2,---, M. A\U(¢) is the I"" largest value of {f;(¢)},. The smaller the I, the
more prominent the features captured by the landscape function A (e.g. Figure 4.7
F, G shows first five landscape functions computed from intervals in D, E respectively;
an interval with infinity that appears in every barcode is ignored in the computation,
e.g. Figure 4.7D). AP is the smallest function (A% (¢) < A\ () for any [ and ¢) that
is not zero for all e. Now we can compare topological portraits of coordination pat-
terns just like functions. We define the distance between the k*" topological portrait
(persistent homology) of two coordination patterns X and X’ as the sup norm of the

difference between their corresponding average landscape functions,
Dy(X, X') = [|Aw(€) = Ne(€)lloo = sup [Ar(€) — Ny (e)] (4.9)

where A\y(€) = + S /\,(f)(e), and {)\,(Cl)}{;l and {)\;C(l)}le are the k' persistence
homology of X and X’ represented as landscape functions.

With a metric defined, we are in a position to study the recurrence plot of topo-
logical portraits, which is a distance matrix with components d; ; = Dy (X (¢;), X(¢;))
for the k™ persistent homology of a time series of coordination patterns X (¢) (Figure
4.8A-B, D-E). The subdiagonal of this matrix reflects the rate of change of topological
features as a function of time. To provide additional comparison between topology-

based and non-topological recurrence, we define a state-based metric by treating each
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point cloud with M points as a state vector with 3M components,

dx(X7X/> = ||($1 _xllf" » UM _le’
Wiz — $/M+1)a o Wiwan — wyy),

TaM+1 — I/2M+1v T, T3M T xéM)H (4.10)

for coordination patterns X = {z;}¥, and X' = {«/}M, | where W follows the defi-
nition in equation (4.3). Recurrence plots based on this metric are included (Figure
4.8C, F) in addition to the traditional recurrence plots of relative phase (Figure 4.3)
to show how much information is gained by the decomposition alone (Section 4.2.1),
without any topological analyses. Notice that d,(X(t;), X (¢;)) increases with the
time difference |t; — ¢;|, which does not reflect the difference in coordination pattern.
Therefore we shift each point in X (¢) along the time-axis backwards by ¢, before com-
puting the recurrence plot. This is not a problem for Dy, since topological portraits
are invariant under translation of the pattern.

In the next section, we will show how the topological method outlined here reveals

transitions in the coordination dynamics between eight agents (Figure 4.2) that eluded

traditional methods of visualization and analysis (Figure 4.2A, Figure 4.3B).

4.3 RESULTS

Before investigating the eight-agent example, we first validate this method with the
triadic example (Figure 4.1), the dynamics of which we already know (see Section 4.1).
Figure 4.8AB shows the recurrence of topological features, i.e. connected components
(0" persistent homology) and loops (1! persistent homology) respectively. In Figure
4.8A, three moments stand out against the background (marked by black triangles),
indicating sudden changes in connected components. These moments coincide with
three “escapes” from the all-inphase pattern in the original relative phase dynamics

(steepened magenta trajectory ¢,3 following each of the three black triangles in Figure
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4.1A; the same interruptions in the coordination pattern can be seen in Figure 4.3A).
Figure 4.8B reveals a small transition around 10s and a large transition around 40s
(marked by black triangles) in terms of loops. They coincide with the time of the
first formation of the all-inphase pattern and its eventual destruction (replaced by
inphase-antiphase pattern), which can be clearly seen in Figure 4.1A and Figure 4.3A.
Taken together, topological recurrence (Figure 4.8AB) is able to faithfully capture
important transitions of coordination patterns observed in the triadic example (Figure
4.1), as much as the traditional recurrence plot of the relative phase (Figure 4.3A).
For comparison, a state-based recurrence plot is shown in Figure 4.8C (i.e. treating
each point cloud as a state vector without extracting topological features, as defined
by equation 4.10), which also captures the essential transitions but not as definitely
as the topology-based recurrence plots (Figure 4.8AB) or the traditional recurrence
plot of relative phases (Figure 4.3A). This indicates that the clarity present in the
topology-based recurrence plots (Figure 4.8 AB) is not solely due to the decomposition
into slow and fast components, or more generally, the point cloud representation of

coordination patterns (Section 4.2.1).
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Figure 4.8: Recurrence plots of topological features versus states. (A-B) shows the
recurrence of connected components and loops respectively for the triadic example, where
the color of each pixel indicates the topological distance between the coordination pattern at
time x and time y, as defined in equation (4.9), i.e. Do(X (), X (y)) for (A), D1(X (z), X (v))
for (B). Black triangles on top mark the time of topological transitions. They correspond
very well with transitions in the original relative phase dynamics (Figure 4.1A) and its
associated recurrence plot (Figure 4.3A). (C) shows the recurrence of states, where the color
of each pixel reflects the distance between point clouds X (z) and X (y) as state vectors, as
defined in equation (4.10), instead of their topological portraits. The same transitions also
appear in (C) as in (A-B) though less sharp. (D-E) shows the corresponding recurrence plots
for the eight-agent example (Figure 4.2). In the recurrence plot of connected components
(D), two transitions are apparent, each of which lasts about 5s (marked by black brackets).
The onset of first transition (around 10s) and the offset of the second (about 33s) also stands
out in the recurrence plot of loops (E), marked by black triangles. These features are not
apparent in the state-based recurrence plot (F, also Figure 4.3B).

Following the basic validation above, we are ready for the eight-agent case. The
recurrence of connected components (Figure 4.8D) is strikingly structured, compared
to the original dynamics (Figure 4.2), the recurrence of relative phases (Figure 4.3B)
and the state-based recurrence of point clouds (Figure 4.8F). It shows a major tran-
sition (in terms of connected components) around 30s and a minor one around 10s

(marked by black brackets on top of Figure 4.8D). The onset of the 10s transition
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and the offset of the 30s transition are also highlighted by the transition of loops
(marked by triangles in Figure 4.8E). Next we return to the original relative phase
and frequency dynamics (Figure 4.9) to investigate what underlies these topological
transitions, with an emphasis on the transitions of connected components.

We begin with the major transition (of connected components) around 30s (second
period with black background in Figure 4.9). Before the onset of this transition, the
ensemble was in a relatively stable configuration with three frequency pairs (Figure
4.9A, trajectories enclosed by black circles), a lone wolf (agent 1, magenta trajectory
on top in Figure 4.9A), and a commuter (agent 4, yellow trajectory in Figure 4.9A)
oscillating between its neighbors (i.e. lone wolf agent 1, and pair 2-3). At the onset of
the transition (28s), the top two frequency pairs broke up and an episode of partner-
switching occurred at 30s (from configuration [1, 4, 3-2, 5-7, 6-8] to [1, 4-3, 2-5, 7-6-
8]). After another partner-switching at the offset of the transition (33s), the original
configuration was restored. This partner-switching dynamics is also reflected in the
relative phases (slowly varying relative phases in Figure 4.9B correspond to circled-
pairs in A, and fast varying relative phases in C correspond to relations indicated
by double arrows in A). Among the slowly varying phase relations (Figure 4.9B),
3-2 (orange) departs from antiphase (+7) at the onset of the transition (break-up
of the frequency pairs), wraps for one cycle during the transition (orange trajectory
tilting), and returns to antiphase at the offset of the transition (green trajectory 5-7
has a similar action, but only wraps for half a cycle during the transition from near
inphase to near antiphase). Complementarily, the fast varying phase relation 4-3
(yellow trajectory in Figure 4.9C) stops wrapping during the transition and dwells
near antiphase (forming a transient new pair; similar action is observed in 2-5 and
7-6 in Figure 4.2A, though not repeated in Figure 4.9C to avoid visual crowding). In
short, we see an interesting non-local transition of multiagent coordination patterns

in both frequency and relative phase, detected by a major transition in the topological
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portrait.

If we trace the global configuration right before the major transition (3 pairs +
1 lone wolf 4+ 1 commuter, around 25s in Figure 4.9A) backwards in time, we reach
the minor transition around 10s (first period with black background). In fact, the
minor transition of connected components marks the inception of the said global
configuration, where agent 1 (magenta in Figure 4.9A) departs from the warm-color
group becoming a lone wolf (also seen in Figure 4.9C as suddenly increased slope of
relative phase 1-4), as pairs 3-2, 5-7 stabilize (Figure 4.9B orange, green trajectories
become flat; the three trajectories in B are in fact most stable during this period
rather than afterwards). In contrast to the major one, this minor transition signifies

multiple local events.
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Figure 4.9: Breaking down the frequency, relative phase and topological dynamics of the
eight-agent coordination. (A-C) shows selected trajectories of frequency and relative phase
from Figure 4.2, after a 2s moving average. (A) shows the frequency dynamics of all eight
agents. (B) shows the dynamics of three slowly varying relative phases (thickened trajec-
tories in Figure 4.2A), corresponding to three pairs of frequency trajectories enclosed by
black circles in (A). (C) shows the dynamics of two fast varying relative phases (among the
thin trajectories in Figure 4.2A), corresponding to relations between frequency trajectories
connected by double arrows in (A). (D) shows the rate of change of connected components
(blue trajectory) and states (yellow trajectory), which is the distance between two con-
secutive patterns under the metric Dy (equation 4.9) and d, (equation 4.10) respectively.
Both trajectories are normalized by mapping [min, max] — [0, 1] for comparison. Two tran-
sitional periods seen in Figure 4.8D are highlighted with black backgrounds, bordered by
adjacent peaks in the blue trajectory in (D). See text for interpretations.

The transitions of loops (marked by triangles in Figure 4.8E) provide supplemen-
tary descriptions of the two transitions discussed above. In particular, the transition
of loops around 10s reflects local disturbances, i.e. high amplitude oscillation in agent

1 and 3’s frequency (magenta and orange trajectories in Figure 4.2B and Figure 4.4B)
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in anticipation of the departure of agent 1 (and the corresponding transition in con-
nected components). The transition of 