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Coordination in living systems—from cells to people—must be understood at
multiple levels of description. Analyses and modelling of empirically
observed patterns of biological coordination often focus either on ensemble-
level statistics in large-scale systems with many components, or on detailed
dynamics in small-scale systems with few components. The two approaches
have proceeded largely independent of each other. To bridge this gap
between levels and scales, we have recently conducted a human experiment
of mid-scale social coordination specifically designed to reveal coordination
at multiple levels (ensemble, subgroups and dyads) simultaneously. Based
on this experiment, the present work shows that, surprisingly, a single
system of equations captures key observations at all relevant levels. It also
connects empirically validated models of large- and small-scale biological
coordination—the Kuramoto and extended Haken–Kelso–Bunz (HKB)
models—and the hallmark phenomena that each is known to capture. For
example, it exhibits both multistability and metastability observed in
small-scale empirical research (via the second-order coupling and symmetry
breaking in extended HKB) and the growth of biological complexity as a
function of scale (via the scalability of the Kuramoto model). Only by
incorporating both of these features simultaneously can we reproduce the
essential coordination behaviour observed in our experiment.
1. Introduction
Coordination is central to living systems and biological complexity at large,
where the whole can be more than and different from the sum of its parts.
Rhythmic coordination [1–3] is of particular interest for understanding the
formation and change of spatio-temporal patterns in living systems, including,
e.g. slime mould [4,5], fireflies [6,7], social groups [8,9] and the brain [10–14].
Theoretical descriptions of biological coordination are often in terms of coupled
oscillators, whose behaviour is constrained by their phase relations with each
other [2,15–18]. Existing studies of phase coordination often focus on systems
of either very few (small-scale, mostly N = 2) [13,19,20], or very many oscillators
(large-scale, N→∞) [21–23]. Here we inquire how the two might be connected
and applied to midscale systems with neither too many nor too few com-
ponents. The present work answers this question by modelling empirically
observed coordinative behaviour in midscale systems (N = 8), based on data
collected in a specially designed human experiment [24]. The resultant model
that captures all key experimental observations happens to also connect
previous theories of small- and large-scale biological coordination in a single
mathematical formulation.
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But first, how are small- and large-scale models different?
Small-scale models were usually developed to capture
empirically observed coordination patterns, as in animal
gaits [25–27], bimanual movement coordination [28,29], neur-
onal coordination [30], interpersonal coordination [31,32],
human–animal coordination [33] and human–machine
coordination [34,35]. They describe multiple stable coordi-
nation patterns (multistability) and the transitions between
them (order-to-order transitions), e.g. from a trot to a gallop
for a horse [36]. In humans, dyadic coordination patterns
like inphase and antiphase (synchronization, syncopation)
were found across neural, sensorimotor and social levels (see
[13,14] for reviews), well captured by the extended Haken–
Kelso–Bunz (HKB) model [29,37,38]. However, the extended
HKB was restricted to describing coordination phenomena
at N = 2 (i.e. not directly applicable to higher-dimensional
coordination phenomena). By contrast, large-scale models
are concerned more about statistical features like the overall
level of synchrony and disorder-to-order transitions, but not
so much about patterns at finer levels. As a representative,
the classical Kuramoto model [2] is applicable to describing
a wide range of large-scale coordination between, e.g. people
[23,39], fish [40] and neural processes [22], and is often studied
analytically for its incoherence-to-coherence transition (at the
statistical level, for N→∞; see [41,42] for reviews).

Although the extended HKB and the classical Kuramoto
model emerged separately, they connect to each other by an
interesting difference: the Kuramoto model with N = 2 is
almost the extended HKB model except that the former lacks
the term responsible for antiphase coordination in the latter
(more accurately, the bistability of inphase and antiphase).
Bistability of inphase and antiphase coordination, with associ-
ated order-to-order transitions and hysteresis, happens to be a
key observation in small-scale human experiments [28,43].
This begs the question of whether there is a fundamental
difference between large- and small-scale coordination
phenomena. Does the existence of antiphase, multistability,
and order-to-order transitions depend on scale N? With
these questions in mind, we recently conducted a human
experiment [24] at an intermediate scale (N = 8), such that
the system is large enough for studying its macro-level proper-
ties, yet small enough for examining patterns at finer levels,
ideal for theories and empirical data to meet at multiple
levels of description. In the following sections, we demonstrate
how the marriage between the two models (not either one
alone) is sufficient for capturing empirical observations at
multiple levels of description and we discuss its empirical
and theoretical implications for biological coordination.
2. Results
2.1. Human coordination at intermediate scales
Before getting into the model, we briefly review the mid-scale
experiment and key results [24]. In the experiment (dubbed
the ‘Human Firefly’ experiment), ensembles of eight people
(N = 8, total 120 subjects) spontaneously coordinated rhythmic
movements in an all-to-all network (via eight touchpads and
eight ring-shaped arrays of eight LEDs as in figure 1; see
Material and methods for details), even though they were
not explicitly instructed to coordinate with each other. To
induce different grouping behaviour, subjects were paced
with different metronomes prior to interaction such that each
ensemble was split into two frequency groups of equal size
with intergroup difference δf = 0, 0.3 or 0.6 Hz (referred to as
levels of ‘diversity’), and were asked to maintain that
frequency during interaction after the metronome was
turned off. Subjects’ instantaneous tapping frequencies from
three example trials (figure 2a–c) show intuitively the
consequences of frequency manipulations: from (a) to (c) a
supergroup of eight gradually split into two frequency
groups of four as diversity increased from δf = 0 to 0.6 Hz.

Key results involve multiple levels of description, in terms
of intergroup, intragroup and interpersonal relations. The level
of intergroup integration is defined as the relationship between
intragroup and intergroup coordination (β1, slope of regression
lines in figure 3a. Here intragroup coordination ismeasured by
the average pair-wise phase-locking value over all intragroup
dyads, and likewise, intergroup coordination over all inter-
group dyads. Phase-locking value per se is a measure of
stability of a relative phase pattern within a period of time,
which equals to one minus the circular variance. See section
‘Phase-locking value and level of integration’ for technical
details). Intuitively, we say that two groups are integrated if
intragroup and intergroup coordination facilitate each other
(positive relation between respective phase-locking values,
β1 > 0), and segregated if intragroup and intergroup coordi-
nation undermine each other (negative relation between
respective phase-locking values, β1 < 0. We will see later in
figure 4 how this measuremeaningfully captures coordination
dynamics). In the experimental result, two frequency groups
were integrated when diversity is low or moderate (δf = 0,
0.3 Hz, blue and red lines, slope β1 > 0) and segregated when
diversity is high (δf = 0.6 Hz, yellow line, slope β1 < 0). A criti-
cal level of diversity demarcating the regime of intergroup
integration and segregation was estimated to be δf* = 0.5 Hz.
Within the frequency groups, coordination was also reduced
by the presence of intergroup difference (figure 3b, left, red
and yellow bars shorter than blue bar). At the interpersonal
level, inphase and antiphase were preferred phase relations
(inphase much stronger than antiphase; distributions in
figure 2d–f ), especially when the diversity was very low
(figure 2d, peaks around ϕ = 0, π, in radians throughout this
paper), but both were weakened by increasing diversity
(figure 2e,f; in episodes of strong coordination, antiphase is
greatly amplified and much more susceptible to diversity
than inphase, see [24]). Notice that subjects did not remain
locked into these phase relations but rather engaged and
disengaged intermittently (two persons dwell near and
escape from preferred phase relations recurrently, a sign of
metastability [13]; see figure 6a red trajectory for example),
reflected also as ‘kissing’ and ‘splitting’ of frequency
trajectories (e.g. in figure 2b). In the following sections,
we present a model that captures these key experimental
observations at their respective levels of description.
2.2. A minimal experiment-based model of multiagent
coordination

Our model of coordination is based on a family of N oscil-
lators, each represented by a single phase angle wi. We will
show that a pair-wise phase coupling [2,25,29] of the form

_wi ¼ vi �
XN
j¼1

aij sin (wi � w j)�
XN
j¼1

bij sin 2(wi � w j), (2:1)



touchpad LED array (top view)

LED array
(front view)

group A group B

Figure 1. Experimental set-up for multiagent coordination. In the Human
Firefly experiment [24], eight subjects interacted simultaneously with each
other via a set of touch pads and LED arrays. Each subject’s movements
were recorded with a dedicated touchpad. Taps of each subject were reflected
as the flashes of a corresponding LED on the array presented in front of each
subject. In each trial, each subject was paced with a metronome prior to
interaction. The metronome assignment split the ensemble of eight into
two frequency groups of four (group A and B, coloured red and blue, respect-
ively, for illustrative purposes; the actual LEDs are all white). The frequency
difference δf between group A and B was systematically manipulated to
induce different grouping behaviour. See text and [24] for details. (Online
version in colour.)
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suffices to model the key features of the experimental data
identified above. The left side of this equation is the time
derivative of wi, while the constant ωi > 0 on the right is
the natural (i.e. uncoupled) frequency of the ith oscillator.
The coefficients aij > 0 and bij > 0 are parameters that govern
the coupling.

Equations (2.1) include a number of well-studied models
as special cases. For instance, setting ϕ := w1− w2, δω := ω1−
ω2, ~a :¼ a12 þ a21 and 2~b :¼ b12 þ b21 for N = 2, the difference
of the two resulting equations (2.1) yields the relative phase
equation

_f ¼ dv� ~a sinf� 2~b sin 2f, (2:2)

of the extended HKB model [37]. The HKB model [29] was
originally designed to describe the dynamics of human
bimanual coordination, corresponding to equation (2.2)
with δω = 0 (i.e. describing the coordination between two
identical components). The extended HKB introduces the
symmetry breaking term δω to capture empirically observed
coordinative behaviour between asymmetric as well as sym-
metric components (i.e. the HKB model is included in the
extended HKB model, which is further included in equations
(2.1)). It has since been shown to apply to a broad variety of
dyadic coordination phenomena in living systems, e.g.
[13,14,19,43,44]. Equations (2.1) can be considered a general-
ization of the extended HKB model from 2 to N oscillators.
It is remarkable that such a direct generalization can repro-
duce key features of the collective rhythmic coordination in
ensembles of human subjects at multiple levels of description.

Another well-studied special case of equations (2.1) is the
Kuramoto model [2], which has bij = 0 (and typically aij = a,
independent of i and j). We will see below, however, that
the Kuramoto model cannot exhibit at least one feature of
the experimental data. Namely, the data show a secondary
peak in the pairwise relative phase of experimental subjects
at antiphase (see figure 2d–f ). Simulations using the
Kuramoto model do not reproduce this effect, while simu-
lations of equations (2.1) model do (compare figure 5d–f and
g–i). We give additional analytical support for this point by
studying relevant fixed points of both models in the electronic
supplementary materials (section ‘Multistability of the present
model’).
2.3. Weak coupling captures human behaviour
Given the spatially symmetric set-up of the ‘Human Firefly’
experiment (all-to-all network, visual presentation at equal
distance to fixation point), it is reasonable to further simplify
equations (2.1) by letting aij = a and bij = b (a, b > 0),

_wi ¼ vi � a
XN
j¼1

sinfij � b
XN
j¼1

sin 2fij, (2:3)

where ϕij = wi− wj is the relative phase between oscillators i
and j (henceforth we use the notation ϕij instead of the
subtraction, since relative phase is the crucial variable for
coordination [28,29]).

The behaviour of the model itself clearly depends on the
coupling strength (a, b) and frequency diversity (distribution
of ωi’s). While the latter was explicitly manipulated in the
human experiment [24], the former was unknown. A qualitat-
ive look at simulated dynamics (see examples figure 4a–c for
δf = 0.6 Hz) indicates that weak coupling better captures
human behaviour (members of the same group do not
collapse to a single trajectory in figure 4a as in figure 2). By
contrast, stronger coupling (figure 4b,c) deprives the system
of much of the metastability. Quantitatively, we fitted the
coupling strength (assuming a = b) to the human data based
on the level of intergroup integration (β1) (see distribution
of model β1 in figure 4d ) particularly for diversity condition
δf = 0.3 Hz (i.e. using only one-third of the data to prevent
overfitting). We show below how the model captures human
behaviour across all diversity conditions and levels of descrip-
tion under the best-fit coupling strength (a = b = 0.105; see
section ‘Choosing the appropriate coupling strength’ in the
electronic supplementary materials for more details).

At the level of intergroup relations, model behaviour
(figure 3c) successfully captures human behaviour (figure 3a)
at all levels of diversity. Similar to the human experiment,
low diversity (δf = 0 Hz) results in a high level of integration
in the model (blue line in figure 3c slope close to 1; β1 = 0.972,
t199 = 66.6, p < 0.001); high diversity (δf = 0.6 Hz) comes with
segregation (yellow line slope negative; β1 =−0.113,
t199 =−3.56, p < 0.001); and in between, moderate diversity
(δf = 0.3 Hz) is associated with partial integration (red line
positive slope far less than 1; β1 = 0.318, t199 = 4.23, p < 0.001).
Here we did not estimate the critical diversity δf* the same
way as for the human data (by linear interpolation), since we
found theoretically that the level of integration depends
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Figure 2. Social coordination behaviour observed in the Human Firefly experiment in terms of frequency dynamics and aggregated relative phase distributions.
Panels (a–c) show instantaneous frequency (average over four cycles) from three example trials with diversity δf = 0, 0.3, 0.6 Hz, respectively. Viewed from
bottom to top, in (c), two frequency groups of four are apparent and isolated due to high intergroup difference (low-frequency group, warm colours, paced
with metronome fA = 1.2 Hz; high-frequency group, cold colours, paced with metronome fB = 1.8 Hz). As the two groups get closer (b), more cross-talk occurred
between them (note contacting trajectories especially after 30 s). Finally, when the intergroup difference is gone (a), one supergroup of eight formed. Panels (d–f )
show relative phase ϕ distributions aggregated from all trials for δf = 0, 0.3, 0.6 Hz, respectively (each distribution was computed from the set of all pair-wise
relative phases at all time points in all trials for a given diversity condition; histograms computed in [0, π), plotted in [− 2π, 2π] to reflect the symmetry and
periodicity of relative phase distributions). When diversity is low (d ), the distribution peaks near inphase (ϕ = 0) and antiphase (ϕ = π), separated by a trough near
π/2, with antiphase weaker than inphase. The two peaks are diminished as δf increases (e,f ), but the weaker one at antiphase becomes flat first ( f ). (Online version
in colour.)
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nonlinearly on diversity δf, and as a result the theoretical δf* is
0.4 Hz (figure 4d ). This prediction can be tested in future
experiments by making finer divisions between δf = 0.3 and
0.6 Hz.

In the human experiment, not only did we uncover the
effect of diversity on intergroup relations, but also, non-
trivially, on intragroup coordination (outside affects within,
a sign of complexity). Statistically, this is shown in figure 3b
(three bars on the left): with the presence of intergroup differ-
ence (δf > 0), intragroup coordination was reduced (red,
yellow bars significantly shorter than blue bar). This is well
captured by the model as shown in figure 3d (two-way
ANOVA interaction effect, F2,19194 = 3416, p < 0.001; the
simulated data also capture the rapid decline of intergroup
coordination with increasing δf in human data, shown in
figure 3b,d, right). In addition to capturing this statistical
reduction of intragroup coordination due to intergroup
difference, the model, more importantly, provides a
window to the dynamical mechanism underlying such stat-
istical phenomena. For example, comparing three simulated
trials with identical intragroup properties but different
levels of intergroup difference (figure 5a–c), we see that the
presence of intergroup difference (figure 5b,c for δf = 0.3,
0.6 Hz) dramatically elevates metastability in the system
(compare intermittently converging–diverging dynamics in
figure 5b,c to the rather constant behaviour in figure 5a for
δf = 0). This suggests that the decrease of intragroup
coordination in a statistical sense reflects the increase of
metastability in a dynamical sense (see section ‘Examples of
dynamics with intergroup coupling removed’ in the elec-
tronic supplementary materials for baseline dynamics when
intergroup coupling is removed). Indeed, if we remove
intragroup metastability from all simulations (by reducing
intragroup frequency variability), they no longer capture
the empirically observed statistical result (see section ‘Effect
of reduced intragroup variability in natural frequency’ in
the electronic supplementary materials).

At the interpersonal level, human subjects tended to coor-
dinate with each other around inphase and antiphase,
especially when the diversity is low (δf = 0 Hz; figure 2d,
peaks around ϕ = 0, π separated by a trough near ϕ = π/2);
and the preference for inphase and antiphase both diminishes
as diversity increases (δf = 0.3, 0.6, figure 2e,f ). Both aspects
are well reproduced in simulations of the model (figure 5d–f ).
Note that these model-based distributions are overall less dis-
persed than the more variable human-produced distributions
(figure 2d–f ), likely due to the deterministic nature of the
model (i.e. no stochastic terms). Yet as demonstrated above,
a deterministic model is sufficient for capturing key empirical
results at all three levels of description, i.e. coexistence of
inphase and antiphase tendencies and their reduction with
diversity, reduction of intragroup coordination with the
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presence of intergroup difference, and intergroup integra-
tion∼segregation at different levels of diversity. Thus, the
deterministic version of the model is preferred for simplicity.
2.4. The necessity of second-order coupling
Equation (2.3) becomes the classical Kuramotomodel [2] when
b = 0. We follow the same analyses as in the previous section
but now for a = 0.154 and b = 0 (see section ‘Intergroup relation
without second order coupling’ in the electronic supplemen-
tary material on parameter choices). The relationship
between intragroup and intergroup coordination (electronic
supplementary material, figure S8A; β1(0 Hz) = 0.974, t199 =
53.2, p < 0.001; β1(0.3 Hz) = 0.292, t199 = 4.52, p < 0.001; β1-
(0.6 Hz) = −0.011, t199 =−0.41, p > 0.05) resembles the case of
b≠ 0 (a = b = 0.105, figure 3c). A difference remains that for b
= 0, β1(0.6 Hz) is not significantly less than zero (p = 0.68;
electronic supplementary material, figure S8A yellow). The
average level of intragroup and intergroup coordination also
varies with diversity in the sameway as the case of b≠ 0 (elec-
tronic supplementary material, figure S8b for b = 0, interaction
effect F2,19194 = 3737, p < 0.001, compared to figure 3d for b≠ 0).
In short, group-level statistical features can be mostly
preserved without second-order coupling (i.e. b = 0).

However, this is no longer the case when it comes to inter-
personal relations. The distributions of dyadic relative phases
are shown in figure 5g–i. Without second-order coupling, the
model does not show a preference for antiphase in any of the
three diversity conditions, thereby missing an important
feature of human social coordination (for additional compari-
sons between human and model behaviour, see section
‘Additional analyses on the coexistence of inphase and
antiphase preference’ in the electronic supplementary
materials). Analytically, we find that the coupling ratio κ =
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red area indicates partial integration (0 < β1≪ 1) suggesting metastability. Dashed grey lines label δf ’s that appeared in the human experiment. Solid grey line
labels the empirically estimated critical diversity. (Online version in colour.)
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2b/a determines whether antiphase is preferred (for the
simple case of identical oscillators, see section ‘Multistability
of the present model’ in the electronic supplementary
materials). A critical coupling ratio κc = 1 demarcates the
regimes of monostability (only all-inphase is stable for κ <
1) and multistability (any combination of inphase and anti-
phase is stable for κ > 1). This critical ratio (for equation
(2.3)) is identical to the critical coupling of the HKB model
[29], where the transition between monostability (inphase)
and multistability (inphase and antiphase) occurs (equation
(2.2); parameters in the two equations map to each other by
a ¼ ~a=2 and b ¼ ~b). This shows how equation (2.3) is a natural
N-dimensional generalization of the extended HKB model, in
terms of multistability and order-to-order transitions.
2.5. The effect of non-uniform coupling
So far, our model has captured very well experimental obser-
vations with the simple assumption of uniform coupling.
However, loosening this assumption is necessary for under-
standing detailed dynamics. Here is an example from [24]
(figure 6a), where coordination among three agents (1, 3
and 4, labels of locations on LED arrays) is visualized as
the dynamics of two relative phases (ϕ13 red, ϕ34 yellow).
Agents 3 and 4 coordinated inphase persistently (10–40 s
yellow trajectory flat at ϕ34≈ 0), while agents 3 and 1 coordi-
nated intermittently every time they passed by inphase (red
trajectory ϕ13 becames flat, i.e. dwells, near inphase around
10, 20 and 35 s). Curiously, every dwell in ϕ13 (red) was
accompanied by a little bump in ϕ34, suggesting ϕ34 was
periodically influenced by ϕ13. In the framework of our
model, we can approximate the dynamics of ϕ34 from
equation (2.1) by assuming ϕ34 = 0 (thus ϕ13 = ϕ14),

_f34 ¼ f(f34)þ (a31 � a41) sinf13 þ (b31 � b41) sin 2f13|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
¼:K(f13)

, (2:4)

where f(ϕ34) is the influence of ϕ34 on itself, K(ϕ13) the influ-
ence of ϕ13 on ϕ34. From K(ϕ13), we see that ϕ13 has no
influence on ϕ34 if the coupling is completely uniform (i.e.
K(ϕ13)≡ 0 if a31 = a41 and b31 = b41), making it impossible to
capture the empirical observation (red relation influencing
yellow relation, figure 6a). To break the symmetry between
agent 3 and 4, we ‘upgrade’ equation (2.3) to the system

_wi ¼ vi � ai
XN
j¼1

sinfij � bi
XN
j¼1

sin 2fij, (2:5)

where each oscillator can have its own coupling style (oscil-
lator specific coupling strength ai and bi). In the present
case, we are interested in what happens when a3≠ a4 for
i∈ {1, 3, 4}. Two simulated trials are shown in figure 6b and
c with non-uniform versus uniform coupling (same initial
conditions and natural frequencies across trials, estimated
from the human data). The bumps in ϕ34, accompanying
dwells in ϕ13, are reproduced when a3≫ a4 (figure 6b) but
not when a3 = a4 (figure 6c; see section ‘Additional triadic
dynamics’ in the electronic supplementary materials for
more analyses). This example shows that to understand inter-
esting dynamic patterns in specific trials, non-uniform
coupling strength is important.
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Figure 5. Model simulations of frequency dynamics and aggregated relative phase distributions. (a–c) An example of how intergroup difference may affect
intragroup coordination using frequency dynamics of three simulated trials (a = b = 0.105; note that frequency is the time derivative of phase divided by 2π,
and consequently the distance between two frequency trajectories reflects the rate of change of the corresponding relative phase, which increases and decreases
intermittently during metastable coordination). These three trials share the same initial phases and intragroup frequency dispersion but different intergroup differ-
ence i.e. δf = 0, 0.3, 0.6 Hz, respectively. When intergroup differences are introduced (b,c), not only is intergroup interaction altered but intragroup coordination
also loses stability and becomes metastable (within-group trajectories converge at black triangles and diverge afterwards). The timescale of metastable coordination
also changes with δf, i.e. the inter-convergence interval is shorter for (b) than (c). (d–f ) Relative phase distributions, aggregated over all time points in 200 trials
(a = b = 0.105) for each diversity condition (δf = 0, 0.3, 0.6, respectively). At low diversity (d ), there is a strong inphase peak and a weak antiphase peak,
separated by a trough near π/2. Both peaks are diminished by increasing diversity (e,f ). These features match qualitatively the human experiment. (g–i) The
same distributions as (d–f ) but for a = 0.154 and b = 0 (i.e. the classical Kuramoto model). There is a single peak in each distribution at inphase ϕ = 0,
and a trough at antiphase ϕ = π. (Online version in colour.)
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3. Discussion
The present model successfully captures key features of mul-
tiagent coordination in mid-scale ensembles at multiple levels
of description [24]. Similar to the HKB model [29], second-
order coupling is demanded by the experimental observation
of antiphase (and associated multistability) but now in eight-
person coordination; and similar to the extended HKB [37],
the model captures how increasing frequency difference δf
weakens inphase and antiphase patterns, leading to segre-
gation but now between two groups instead of two
persons. This cross-scale consistency of experimental obser-
vations may be explained by the scale-invariant nature of
the critical coupling ratio κc = 1, the transition point between
monostability (only an all-inphase state) and multistability
(states containing any number of antiphase relations). The
scale invariance suggests that experimental methods and
conclusions for small-scale coordination dynamics have
implications for multistability, phase transitions and metast-
ability at larger scales, and enables a unified approach to
biological coordination that meshes statistical mechanics
and nonlinear dynamics.

Another generalization of the classical Kuramoto model
by Hong & Strogatz [45] also allows for antiphase-containing
patterns (π-state) by letting the sign of the first-order coupling
(a) be positive for some oscillators (the conformists) and
negative for others (the contrarians). However, in contrast
to our model, antiphase induced this way does not come
with multistability, nor the associated order-to-order tran-
sitions observed in human rhythmic coordination [13,46].
The second-order coupling in our model allows each individ-
ual to be both a conformist and a contrarian but possibly to
different degrees [47]. The simple addition of a second
stable state may not seem like a big plus at N = 2 (2 stable
states), but it rapidly expands the system’s behavioural
repertoire as the system becomes larger (2N−1 stable states
for N oscillators; with only first-order coupling, the system
always has 1N−1 = 1 stable state, and therefore does not
benefit from scaling up). This benefit of scale may be how
micro-level multistability contributes to the functional
complexity of biological systems [43,48].

Outside of the mathematical context of stability analysis,
we have to recall that spontaneous social coordination is
highly metastable (e.g. figure 2a) [24], captured by the
model when frequency diversity is combinedwithweak coup-
ling (e.g. figure 4a, in contrast to b,c under stronger coupling).
Individuals did not become phase-locked in the long term,
but coordinated temporarily when passing by a preferred
state (inphase and antiphase) [14,43] (e.g. red trajectory in
figure 6a). For N > 2, an ensemble can visit different spatial
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organizations sequentially (see examples in [24]), forming
patterns that extend in both space and time (electronic
supplementary material, figure S4 for intragroup patterns),
which further expands the repertoire of coordinative behav-
iour (see section ‘A note on metastability’ in the electronic
supplementary materials). By allowing complex patterns to
be elaborated over time, metastability makes a viable mechan-
ism for encoding complex information as real-world complex
living systems do (e.g. the brain) [13,14,22,49–52]. By contrast,
highly coherent patterns like collective synchronization can be
less functional and even pathological [53,54]. Our results call
for more attention to these not-quite coherent but empirically
relevant patterns of coordination.

Besides the multistability or multi-clustering in micro pat-
terns (a general feature endowed by higher-order coupling,
e.g. [55–57]), existing mathematical studies suggest that the
presence of second-order coupling should also manifest at
the macro level in large-scale coordination. Naturally,
second-order coupling induces multistability of the order
parameter in the thermodynamic limit [58–61]. It also alters
the critical scaling of macroscopic order (see [41] for a sum-
mary), i.e. for coupling strength K > Kc near Kc, the order
parameter ∥H∥ (norm of the order function [62]) is pro-
portional to (K � Kc)

b, with β = 1/2 for the classical
Kuramoto model and β = 1 when second-order coupling is
added [63,64]. For complex biological systems like the brain
which appears to operate near criticality [65], these two
types of scaling behaviour may have very different functional
implications. When modelling empirical data of biological
coordination, one may want to have a closer examination or
re-examination of the data for multistability and critical
scaling of the order parameter, especially if finer level details
are not available.

Key experimental observations are captured by our model
under the assumptions of uniform coupling (everyone coordi-
nates with others in the same way) and constant natural
frequency, but these assumptions may be loosened to reflect
detailed dynamics. For example, introducing individual differ-
ences in coupling style (equation (2.5)) gives more room to
explain how one metastable phase relation may exert strong
influence on another (figure 6a). Long timescale dynamics
observed in the experiment (see section ‘Additional triadic
dynamics’ in the electronic supplementary materials) may also
be explained by frequency adaptation,which has been observed
in dyadic social coordination [66]. A systematic studyof the con-
sequences of asymmetric coupling and frequency adaptation on
coordination among multiple agents seems worthy of further
experimental and theoretical exploration.

To conclude, we proposed a model that captured key
features of human social coordination in mid-sized ensembles
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[24], and at the same time connects empirically validated
large-scale and small-scale models of biological coordination.
The model provides mechanistic explanations of the statistics
and dynamics already observed, as well as a road map for
future empirical exploration. As an experimental–theoretical
platform for understanding biological coordination, the
value of the middle scale should not be underestimated, nor
the importance of examining coordination phenomena at
multiple levels of description.
/journal/rsif
J.R.Soc.Interface
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4. Material and methods
4.1. Methods of the human experiment
A complete description of the methods of the ‘Human Firefly’
experiment can be found in [24]. Here we provide as many
details as necessary for understanding the present paper.
A total of 120 subjects participated in the experiment, making
up 15 independent ensembles of eight people. The protocol
was approved by Florida Atlantic University Institutional
Review Board and is in agreement with the Declaration of
Helsinki. Informed consent was obtained from all participants
prior to the experiment.

For an ensemble of eight people, each subject was equipped
with a touchpad that recorded his/her tapping behaviour as a
series of zeros and ones at 250 Hz (1 = touch, 0 = detach; green
rectangles in figure 1), and an array of eight LEDs arranged in
a ring (yellow in figure 1), each of which flashed when a particu-
lar subject tapped. For each trial, subjects were first paced with
metronomes for 10 s, later interacting with each other for 50 s
(instructed to maintain metronome frequency while looking at
others’ taps as flashes of the LEDs). Between the pacing and
interaction period, there was a 3 s transient, during which
subjects tapped by themselves. Participants were instructed to
match their own tapping frequency to the metronome frequency
during the 10 s pacing period, and remain tapping at that
frequency throughout the rest of the trial even after the
metronome disappeared.

During pacing, four subjects received the same metronome
(same frequency, random initial phase), and the other four
another metronome. The metronome assignments created two
frequency groups (say, group A and B) with intergroup difference
δf = |fA− fB| = 0, 0.3 or 0.6 Hz (same average ( fA + fB)/2 =
1.5 Hz). This gives rise to three conditions: (1) 1.5 Hz versus
1.5 Hz, (2) 1.65 Hz versus 1.35 Hz, and (3) 1.8 Hz versus
1.2 Hz. Each ensemble completed six trials per condition
(a total of 18 trials in random order). From a single subject’s
perspective, the LED array looks like the legend of figure 2a
(all LEDs emit white light; colour-coding only for labelling
locations): a subject always saw his/her own taps as the flashes
of LED 1, members of his/her own frequency group LED 2–4,
and members of the other group LED 5–8 (members from two
groups were interleaved to preserve spatial symmetry).

From the tapping data (rectangular waves of zeros and ones),
we obtained the onset of each tap, from which we calculated
instantaneous frequency and phase. Instantaneous frequency is
the reciprocal of the interval between two consecutive taps.
Phase (w) is calculated by assigning the onset of the nth tap
phase 2π(n− 1), then interpolating the phase between onsets
with a cubic spline. The relative phase between the ith and jth
subject at time t is ϕij(t) = wi(t)− wj(t).

4.2. Estimating the distribution of natural frequencies
Human subjects have variable capability to match the metro-
nome frequency and maintain it, which in turn affects how
they coordinate. To reflect this kind of variability in the
simulations, the oscillators’ natural frequencies were drawn
from a probability distribution around the ‘metronome fre-
quency’ (central frequencies fA and fB for groups A and B). To
estimate this distribution from human data, we first approxi-
mated the ‘natural frequency’ of each subject in each trial with
the average tapping frequency during the transient between
pacing and interaction periods (see Methods of the human exper-
iment), and subtracted from it the metronome frequency (see
blue histogram in electronic supplementary material, figure S3
from the ‘Human Firefly’ experiment [24]). We then estimated
the distribution non-parametrically, with a kernel density estimator
in the form of

P̂(x) ¼ 1
nh

Xn
i¼1

K
x� xi
h

� �
, (4:1)

where the Kernel Smoothing Function is Normal,
K(y) ¼

�
1=

ffiffiffiffiffiffi
2p

p �
e�y2=2. Here n = 2072 (259 trials × 8 subjects)

from the experiment. We choose the bandwidth h = 0.0219,
which is optimal for a normal density function according to [67],

h ¼ 4
3n

� �1=5

s, (4:2)

where σ is the measure of dispersion, estimated by

~s ¼ median{jyi �median{yi}j}
0:6745

, (4:3)

where yi’s are samples [68]. The result of the estimation is shown
in electronic supplementary material, figure S3 (red curve).
4.3. Phase-locking value and level of integration
The (short-windowed) phase-locking value (PLV) between two
oscillators (say x and y) during a trial is defined as

PLVxy ¼ 1
W

XW
w¼1

1
M

�����
XM
m¼1

exp (ifxy[(w� 1)Mþm])

�����, (4:4)

where ϕxy = wx− wy, W is the number of windows which each ϕ
trajectory is split into, and M is number of samples in each
window (in the present study, W = 16 and M = 750, same as [24]).

Intragroup PLV (PLVintra) is defined as

PLVintra ¼ jAj
2

� �
þ jBj

2

� �� ��1 X
x;y[A

PLVxy þ
X
x;y[B

PLVxy

0
@

1
A,

(4:5)

where A and B are two frequency groups of four oscillators,
corresponding to the design of the ‘Human Firefly’ experiment
[24], A = {1, 2, 3, 4}, B = {5, 6, 7, 8} and |A| = |B| = 4.

Intergroup PLV (PLVinter) is defined as

PLVinter ¼ 1
jAkBj

X
x[A,y[B

PLVxy: (4:6)

In both the human and simulated data, comparisons of PLVintra

and PLVinter for different levels of δf were done using two-way
ANOVA with Type III sums of squares, and Tukey honest
significant difference tests for post-hoc comparisons (shown in
figure 3b,d ).

The level of integration between two frequency groups is
defined based on the relationship between intragroup coordi-
nation (measured by PLVintra) and intergroup coordination
(measured by PLVinter). The groups are said to be integrated if
intragroup coordination is positively related to intergroup
coordination, and segregated if negatively related. Quantitatively,
for each combination of intergroup difference δf and coupling
strength a (assuming a = b for our model, assuming b = 0 for the
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classical Kuramoto model), we use linear regression

PLV(df ,a)
inter,k ¼ b

(df ,a)
0 þ b

(df ,a)
1 PLV(df ,a)

intra,k þ error(df ,a)k , (4:7)

where PLV(df ,a)
�,k is the inter/intra-group PLV for the kth trial

simulated with the parameter pair (δf, a), and the slope of the
regression line b

(df ,a)
1 is defined as the measure of the level of inte-

gration between two frequency groups. If β1 > 0, the groups may
be said to be integrated; if β1 < 0, segregated. The set
{(df , a)jb(df ,a)

1 ¼ 0} is the critical boundary between the domains
of intergroup integration and segregation. Theoretical analyses
(section ‘Choosing the appropriate coupling strength’ in the
electronic supplementary materials) show that this measure is
meaningful (i.e. reflecting qualitative differences between
dynamics; figure 4a–c).

4.4. Method of simulation
All simulations were done using the Runge–Kutta 4th-order
integration scheme, with a fixed time step Δt = 0.004 for duration
T = 50 (matching the sampling interval and the duration of
interaction period of the human experiment [24]; second may
be used as unit), i.e. for system _X ¼ f(X), with initial condition
X(0) =X0, the (n + 1)th sample of the numeric solution can be
solved recursively

X[nþ 1] ¼ X[n]þ 1
6
(k1 þ 2k2 þ 2k3 þ k4), (4:8)

where

k1 ¼ Dt f (X[n]), (4:9)

k2 ¼ Dt f X[n]þ k1
2

� �
, (4:10)

k3 ¼ Dt f X[n]þ k2
2

� �
(4:11)

and k4 ¼ Dt f(X[n]þ k3): (4:12)
The solver was implemented in CUDA C++, ran on a NVIDIA
graphics processing unit, solving every 200 trials in parallel for
each parameter pair (δf, a). For each trial, initial phases (of
eight oscillators) were drawn randomly from a uniform distri-
bution between 0 and 2π, and natural frequencies from
distributions defined by equation (4.2) (reflecting the design of
and variability observed in the human experiment [24]). Here
200 trials are used per condition, greater than that of the
human experiment (see [24] and section ‘Design of the human
experiment’ in the electronic supplementary materials for details)
to obtain a more accurate estimate of the mean.
Ethics. The protocol of the human experiment was approved by
Florida Atlantic University Institutional Review Board and is in
agreement with the Declaration of Helsinki. Informed consent was
obtained from all participants prior to the experiment.

Data accessibility. Data of the human experiment are available online at
doi:10.17605/OSF.IO/SC9P6. Simulated data are available at
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Supplementary Materials

For the article “Connecting empirical phenomena and theoretical models of biological co-

ordination across scales” by Mengsen Zhang, Christopher Beetle, J. A. Scott Kelso and Em-

manuelle Tognoli, in the Journal of the Royal Society Interface.

Additional analyses on the coexistence of inphase and antiphase preference

The coexistence of inphase and antiphase preference in human coordination (24) (Fig 2D-F)

and model behavior (Fig 5D-F) is reflected by the location of troughs (minima in the probability

density functions) separating the inphase and antiphase peaks. In the human data (Fig 2D-F),

the minima are at φ = 0.62π , 0.77π, and 0.8π (away from both 0 and π) for δf = 0, 0.3, and 0.6

Hz respectively, with the minimum for δf = 0 Hz significantly less than chance (p < 0.0005,

Fig S1A; nowhere with probability density significantly less than chance for δf = 0.3, and

0.6 Hz, as shown in Fig S1BC). This suggests that there is an unstable phase relation between

inphase and antiphase, which is most prominent for δf = 0 Hz. This is well reflected in the

behavior of the present model (i.e. equation (3) with a = b = 0.105) shown in Fig 5D-F, where

the minima of the probability density functions are at φ = 0.6π, 0.7π, and 0.67π for δf = 0, 0.3,

and 0.6 Hz and the contrast between the minimum and the antiphase peak is most prominent for

δf = 0 Hz (Fig 5D). On the other hand, for the Kuramoto model (i.e. equation (3) with b = 0),

the minima of the probability density functions are always at φ = π for all δf ’s (Fig 5G-I),

reflecting the instability related to antiphase when second order coupling is removed (supported

by analytical results in Section Multistability of the present model). To think probablistically

of how the troughs in the distributions inform us about which model better captures empirical

phenomena, we consider the probability of observing the minima of three random distributions

in a specific interval. The probablity of the minima of three random distributions to fall within

the interval [0.6π, 0.8π] (like those for the human data and simulations of the proposed model)
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is 0.008, and that for interval [0.99π, π] (like those for simulations of the Kuramoto model)

is 10−6. Thus, the convergence between human behavior and that of the proposed model, the

divergence between human behavior and the Kuramoto model are highly unlikely to be due to

chance. With all considered, the experimental phenomena from (24) cannot be fully captured

without the second order coupling.
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Fig S1. Relative phase distributions in the human experiment and comparisons with
corresponding chance-level distributions for δf = 0 (A), 0.3 (B), and 0.6 Hz (C). coloured
solid lines are the probability density functions of all dyadic relative phases for different δf ’s,
each estimated in 100 bins. White solid lines and colour-shaded areas are the chance level
distributions and corresponding confidence intervals with significance level p = 0.0005 per bin
(after Bonferroni correction for p̂ = 0.05 for an entire distribution; see the construction of
random distributions in Section D in S1 File of (24)). Black dots above the distributions mark
where the probability density functions are significantly greater than chance, and black dots
below mark where they are significantly less than chance (dots appear as bars when significant
difference from chance is found in consecutive bins). This is a reproduction of Fig E (B1-B3)
in S1 File of (24) but with all bins significantly different from chance marked (rather than as
in (24), bins were marked only if significance was found in 3 or more consecutive bins).

For simulated dynamics, we show in Fig S2 that antiphase peaks in the relative phase dis-

tributions (prominent in Fig S2A, weak in Fig S2BC, which were reproduced from Fig 5D-F)

did not result from transient behavior. Removal of transients from every simulated trial has

little effect on the the relative phase distributions (comparing red dashed curves to black solid

curves).
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Fig S2. Aggregated relative phase distributions of simulated trials with δf = 0 (A), 0.3 (B),
and 0.6 Hz (C). Each distribution was computed from 200 simulated time series. Distributions
computed from all time points of all trials are plotted as black solid curves, which are identical
to those in Fig 5D-F. Distributions computed from the same trials but with the first 10s of each
time series discarded are plotted as red dashed curves.

Choosing the appropriate coupling strength

What we want to see is how the present model behaves as we manipulate the diversity of nat-

ural frequency ωi’s just as we did to human subjects. However, there remain two unknown

parameters to be taken care of, namely the coupling strength a and b in equation (3). Before

systematically finding the appropriate coupling strength, we want to first show qualitatively how

it affects the dynamics.

Three simulated trials with increasing coupling strength are shown in Fig 4 from A to C,

where the initial phases and natural frequencies are the same across trials (warm-color group

centered around fA = 1.2 Hz, cold-color group fB = 1.8 Hz, corresponding to the condition

δf = 0.6 Hz). When the coupling is weak (a = b = 0.1, Fig 4A), oscillators are well-segregated

into two frequency groups. Within each frequency group, members intermittently converge

(marked by black triangles) then diverge, reflecting metastability at a group level (collective

dwells). For intermediate coupling (a = b = 0.2, Fig 4B), oscillators within each group are

locked together, interacting strongly as a whole with the other frequency group (seen as the

oscillation of frequency), so that the ensemble (N = 8) behaves like a dyad (N = 2). Finally,

for strong coupling (a = b = 0.4, Fig 4C), everyone converges to a single steady frequency.
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We see a progression from group-level segregation to integration from (A) to (C), indicating

the important role of coupling strength in determining intergroup relation. Qualitatively, the

model’s behavior under weak coupling (Fig 4A) is closer to human behavior (Fig 2C) than that

of stronger coupling. Next we take a more quantitative look.

To quantify the joint effect of frequency diversity (δf ) and coupling strength (a = b for

simplicity) on integration and segregation between two frequency groups, we calculated the

level of intergroup integration (β1) for simulated trials using the same method as for the human

experiment (see Phase-locking value and level of integration in Materials and Methods in the

main text). For each parameter pair (δf, a) with a = b, we simulated 200 trials. In each simu-

lated trial, two frequency groups A and B each consists of four oscillators (ϕ1, · · · , ϕ4 in group

A, ϕ5, · · · , ϕ8 in group B). The natural frequency of oscillators in group A (i.e. ω1, · · · , ω4,

divided by 2π) was drawn from a distribution P (fA) centered around fA (corresponds to the

metronome frequency for the group in the human experiment), and P (fB) for group B. The

difference between two groups δf = |fA−fB| corresponds to the level of diversity in the human

experiment. Here the probability density function P (f), which defines frequency dispersion

within each group, was obtained by a nonparametric estimation of the empirical distribution

(see Materials and Methods in the main text).

The level of intergroup integration for simulated trials is shown in Fig 4D as the colour

of each pixel (diversity δf as y-coordinate; coupling strength a = b as x-coordinate). Three

regimes are apparent: the highly integrated (yellow, β1 ≈ 1), the partially integrated (red,

0 < β1 � 1), and the segregated (blue, β1 < 0). Between the red and blue area is the critical

boundary (white solid line, β1 = 0), separating the regimes of integration and segregation. With

any fixed coupling strength, for the critical boundary to fall between δf = 0.3 Hz and δf = 0.6

Hz as in the human experiment, the coupling strength has to be weak (for δf = 0.6 Hz, β1 < 0

only when a = b < 0.15 ) but not too weak (for δf = 0.3 Hz, β1 > 0 only when a = b > 0.05).
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Without risking overfitting, we simply choose the coupling strength a = b = 0.105, for which

the level of intergroup integration is the closest to experimental observation for δf = 0.3 Hz

(β1 = 0.31).

Empirical distribution of tapping frequency around metronome frequency

In the “Human Firefly” experiment (24), subjects’ tapping frequency during the transient be-

tween pacing and interaction (a proxy to “natural frequency”; see Materials and Methods in

main text) dispersed around the metronome frequencies. The distribution of this deviation from

metronome frequencies is shown in Fig S3 (blue histogram). Most of the time, subjects were

very close to the metronome frequency (peak around zero). We can use a normal distribution

N (µ, σ) to capture this peak (Fig S3 yellow line), where parameters µ = 0 and σ = 0.0986

(Hz) were estimated using the median and 10th percentile of the empirical distribution. We

can see a difference between the empirical distribution and the normal distribution - the normal

distribution (yellow line) does not capture the fat-tails of the empirical distribution (blue bars

exceed yellow line on its shoulders). These “mutant fireflies” making up the fat-tails are not to

be dismissed as out-liers, because they contribute to the behavior of others in the ensemble. To

better represent the empirical distribution, we used Kernel Density Estimation (with a normal

kernel) as described in section Estimating the distribution of natural frequencies of Materials

and Methods in the main text, and the result of estimation is shown as the red line in Fig S3

(named kernel distribution). The kernel distribution better captures the tails of the empirical

distribution and was used to generate natural frequencies of oscillators in the simulations.
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Fig S3. Distribution of human movement frequency around metronome frequencies and its
estimation.

Examples of dynamics with intergroup coupling removed

By removing intergroup coupling, we obtain a modification of equation (3)

ϕ̇i = ωi − a
N∑
j=1

eij sinφij − b
N∑
j=1

eij sin 2φij (S1)

where eij = 1 if i, j ∈ {1, 2, 3, 4} or i, j ∈ {5, 6, 7, 8}, eij = 0 otherwise, for N = 8. The

resulting dynamics (with all other parameters the same as examples in Fig 5A-C in the main

text) are given in Fig S4. Within each frequency group (one group in cold colours, one group in

warm colours), we see the same intragroup metastable dynamics being repeated regardless of

intergroup difference (df = 0, 0.3, 0.6 Hz for Fig S4A, B, C respectively). These trials, without

intergroup coupling, provide a baseline dynamics for comparison with Fig 5A-C, revealing

the effect of intergroup influence. It turns out that for a given intragroup coupling, intragroup

metastability comes from intragroup dispersion of natural frequencies. Metastability vanishes

when two metastable groups have no intergroup difference (Fig 5A). In other words, without
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intergroup difference (δf = 0), there are more oscillators within the same range of frequency,

which cooperatively increases intragroup coordination. If we remove this intragroup dispersion

of natural frequency (along with the metastability), we can no longer reproduce the experimental

observation that intragroup coordination was weakened and altered by intergroup differences

(see Effect of reduced intragroup variability in natural frequency for a statistical analysis).
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Fig S4. Intragroup dynamics without intergroup coupling, for intergroup difference δf = 0
(A), δf = 0.3 (B), and δf = 0.6 Hz (C).

With intergroup coupling, the time scale of metastability is modified by δf , as shown in

Fig 5BC where the interval between two episodes of convergence (black triangles) is shorter

for δf = 0.3 Hz (B) than for δf = 0.6 Hz (C). In Fig S5A, this is also visualized as the

dynamics of phase-locking value (PLV) within groups (average PLV of all intragroup dyads in
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3-s windows). When oscillators within groups converge, PLV is close to 1, and the interval

between two consecutive peaks in a PLV trajectory reflects the time scale of the metastable

coordination. Without influence from the other group, the time scales are exactly the same

(trajectories exactly on top of each other in Fig S5B). With influence from the other group, the

time scale depends on the level of intergroup difference (inter-peak intervals for δf = 0.3 Hz

was much shorter than that of δf = 0.6 Hz in Fig S5A). Perhaps, we can consider δf = 0 Hz

(i.e. lost of metastability, S5A blue line) as the special case where the inter-convergence interval

is zero.

Fig S5. Dynamics of intragroup phase-locking value (PLV) with (A) and without (B)
intergroup coupling.

It is also interesting to notice that for δf = 0.6 Hz, the metastable time-scale of the trial with
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intergroup coupling (Fig S5A yellow line) is very similar to that of the trial without intergroup

coupling (Fig S5B yellow line). This may be connected to the fact that δf = 0.6 Hz (given

a = b = 0.105) is in the regime of intergroup segregation. It is perhaps a hypothesis worth

further investigation that the level of intergroup integration (as measured by β1, see main text)

reflects how the time scale of intragroup metastability was affected by intergroup difference.

Here our discussion on these examples is only to provide an intuitive understanding of the

dynamics.

Effect of reduced intragroup variability in natural frequency

Recall that the reduction in intragroup coordination shown in Fig 3D (left) was based on sim-

ulations with nontrivial dispersion in natural frequency within each group, reflecting the nat-

ural variability carried into the experiment by human subjects. What if we remove that intra-

group dispersion? As shown in Fig S6A (left three bars), intragroup coordination becomes all

very close to the maximal level (phase-locking value close to 1) for all diversity conditions

(MANOVA interaction effect F (2, 19194) = 50152, p < 0.001); we no longer see the large

drop in intragroup coordination as seen in Fig 3BD. Even if we break the symmetry in coupling

strength (use equation (1) with random coefficients, instead of uniform coupling in equation

(3); see Random coupling for details), the phenomenon is not recovered (Fig S6B very similar

to A; MANOVA interaction effect F (2, 19194) = 59678, p < 0.001). By studying the model’s

behavior, we found that the reduction in intragroup coordination due to intergroup difference, as

observed in the human experiment, mainly depends on asymmetry in natural frequency rather

than coupling strength.
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Fig S6. Intragroup and intergroup phase-locking by different levels of diversity δf for
simulated data with identical natural frequency within groups. (A) shows the results of
simulations with uniform coupling, and (B) non-uniform coupling (a’s and b’s are randomly
distributed in the interval [0, 0.2] see text for details).

Random coupling

To study the effect of symmetry breaking in coupling strength, we generated random coefficients

for equation (1), following a uniform distribution on the interval [0, amax],

P (a) =
1

amax
. (S2)

We simulated 200 trials for each parameter pair (δf = 0.3Hz, amax) for amax ∈ [0, 1] (dis-

cretized into intervals of length 0.01) with initial phases randomly distributed from 0 to 2π and

natural frequencies following the empirical distribution from the human experiment (see Empir-

ical distribution of tapping frequency around metronome frequency). We then find the value of

amax = 0.2, which produces the level of intergroup integration (β1) closest to the experimental

value (0.31). Using this fitted amax, we simulated 200 trials with no intragroup dispersion in

natural frequency, which were used to produce results in Fig S6B.

11



Intergroup relation without second order coupling

To examine whether the second order coupling term (i.e. b
∑

sin 2φij) in equation (3) is neces-

sary for reproducing key experimental results, we let b = 0 and followed the exact same analysis

as for the case of b 6= 0. The results are shown in Fig S7 (its b 6= 0 counterpart is Fig 4D), and

Fig S8AB (its b 6= 0 counterpart is Fig 3CD).

Fig S7 shows the organization of the parameter space δf × a in terms of the level of integration

between groups (β1, see definition in main text). Similar to Fig 4D (for b 6= 0), the space con-

sists of three regions - complete integration (β1 ≈ 1, yellow), partial integration (0 < β1 � 1,

red), and segregation (β1 < 0, blue) - arranged from upper right to lower left. Fig S7 is approx-

imately a scaled version of Fig 4D along a.

Fig S7. Level of integration between groups by δf and a, with b = 0.
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We estimated the coupling strength to be a = 0.154, where the corresponding level of

intergroup integration for δf = 0.3 Hz is the closest to the empirical value (up to 10−3 precision

for a; for a = 0.154, β1(0.3Hz) = 0.29, the empirical value is 0.31). The corresponding

relations between intragroup and intergroup coordination is shown in Fig S8A and average

intra/intergroup coordination in Fig S8B for different levels of δf .

In Fig S8A, each dot represents a particular trial with its x-coordinate indicating the average

intragroup coordination (measured by phase-locking value, see Materials and Methods in main

text) and y-coordinate the average intergroup coordination, whereas the colour indicates the

diversity δf . Similar to the human experiment and the case of b 6= 0, more intragroup coordi-

nation is associated with more intergroup coordination (i.e. intergroup integration) for δf = 0

and 0.3 Hz (blue, red regression lines with positive slopes), and less intergroup coordination

(i.e. intergroup segregation) for δf = 0.6 Hz (yellow regression line with negative slope). Two

differences are (1) the β1 for δf = 0.6 Hz and b = 0 is not significantly different from zero

(p > 0.05; see main text for more statistics), where as its counterparts in the human data and the

case of b 6= 0 are (p < 0.05); (2) in the human data and the case of b 6= 0, three regression lines

intersect at almost the same point (see Fig 3A, C), which is not the case for b = 0 (Fig S8A).
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Fig S8. Intragroup, intergroup coordination and the relationship between them for a = 0.154
and b = 0. Here the level of coordination is measured by phase-locking value (see main text
for definitions). (A) shows the relationship between intragroup (x-coordinate of each dot) and
intergroup coordination (y-coordinate of each dot) for different levels of diversity (color code).
The solid lines are corresponding regression lines whose slope quantifies the level of
integration between two frequency groups. (B) shows the average intragroup (left three bars)
and intergroup coordination (right three bars) for different levels of diversity (color code).

In Fig S8B, we show the average level of intragroup and intergroup coordination (again, in

terms of phase-locking values). Intragroup coordination is reduced by the presence of inter-

group difference (red, yellow bars on the left significantly shorter than blue bar). Intergroup

coordination is more dramatically reduced by intergroup difference. Overall, these results re-

semble those of the human data and the case of b 6= 0.

Multistability of the present model

The equations for N Kuramoto oscillators with the same natural frequency, coupled to one

another with a uniform coupling a > 0 are

ϕ̇i = −a
∑
j

sin(ϕi − ϕj). (S3)
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These equations can be recast in the mean-field form

ϕ̇i = −r sin(ϕi − ψ) with r eiψ := a
∑
j

eiϕj , (S4)

which admit two types of fixed points: either (a) r = 0, or (b) sin(ϕi−ψ) = 0 for each oscillator.

In either case, the linearized equations governing the evolution of a small perturbation δϕ away

from a fixed point are

δϕ̇i = −a
∑
j

cos(ϕi − ϕj) (δϕi − δϕj)

= −r cos(ϕi − ψ) δϕi + a
∑
j

cos(ϕi − ϕj) δϕj (S5)

We will study these linearized equations in the two cases separately.

Case (a) The first term of equation (S5) vanishes in this case. If we assume further that

δϕj = 0 initially for all but one oscillator, then the simplified equations are

δϕ̇i = a cos(ϕi − ϕj) δϕj. (S6)

In particular, δϕj itself grows exponentially at a rate a, so this fixed point cannot be stable.

Case (b) In this case there are two subgroups of oscillators, all exactly inphase within their

group, and exactly antiphase to the other group. These groups cannot be equal in number

because then r = 0 in equation (S5). Accordingly, we have r = (n+ − n−)a, where n+ > n−

are the sizes of the in- and antiphase groups (relative to the mean oscillator ψ, which of course

is inphase with the larger group). The linearized equations become

δϕ̇i = −(n+ − n−)asi δϕi + asi
∑
j

sj δϕj, (S7)

where si := cos(ϕi − ψ) = ±1 indicates whether ϕi is in- or antiphase to ψ. This equation can

be recast in the matrix form

δϕ̇ = J δϕ :=
[
aSHS − (a trS)S

]
δϕ, (S8)
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where S is the N × N matrix with non-zero entries si = ±1 along the diagonal and H is the

N ×N matrix with all entries equal to +1. Our goal is to show that the Jacobian matrix J has

at least one positive eigenvalue. This will imply that the fixed point is unstable dynamically. To

do this, first we use the elementary identities S2 = 1 and H2 = ( tr 1)H to calculate

J2 = (a tr 1)J − (a trS)
[
aHS + aSH − (a tr 1)S − (a trS)1

]
, (S9)

where 1 denotes the N × N identity matrix. The additional identity HSH = ( trS)H then

gives

J3 = (a tr 1)J2 + (a trS)2J + (a trS)2
[
aH − (a tr 1)1

]
(S10)

Applying all three of these identities one last time yields

J4 = (a tr 1)J3 + (a trS)2J2 − (a tr 1)(a trS)2J. (S11)

That is, J solves a quartic polynomial, which moreover factors in the form

J
[
J − (a tr 1)1

][
J − (a trS)1

][
J + (a trS)1

]
= 0. (S12)

This is clearly the minimal-order polynomial that J solves, and it has all distinct roots. It

follows that J has a complete basis of eigenvectors with eigenvalues λ0 := 0, λ∗ := Na,

λ+ := (n+ − n−)a, and λ− := (n− − n+)a. (We can’t tell the multiplicity of each of these

eigenvalues from this calculation, but each has at least a one-dimensional eigenspace associated

to it.) The zero eigenvalue arises because the right side of equation (S3) involves only relative

phases, so the dynamics is insensitive to rigid rotations ϕi 7→ ϕi + θ for all i. The eigenvalues

λ∗ and λ+, meanwhile, are strictly positive, and show that this fixed point is unstable.

The lone exception to this argument occurs when n− = 0, and therefore S = 1. Then we

have J = a[H − N1], which clearly has a zero eigenspace corresponding to the rigid rotation

of all oscillators in the system (i.e., all δϕi equal to one another). Apart from this, there is
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only a single, complementary eigenspace of dimension N − 1 associated with the eigenvalue

λ = −Na. The configuration with all oscillators exactly inphase is therefore the only stable

fixed point solution of the Kuramoto model.

Our model (with second-order coupling), on the other hand, has multiple stable fixed points

for suitable values of its parameters. For uniformly coupled, identical oscillators, our equations

are

ϕ̇i = −a
∑
j

sin(ϕi − ϕj)− b
∑
j

sin 2(ϕi − ϕj). (S13)

The fixed points of the Kuramoto model with each ϕi equal either to ψ or to ψ+π are also fixed

points of these equations, and the linearized equations around such a fixed point are

δϕ̇i = −(n+ − n−)asi δϕi + asi
∑
j

sj δϕj − 2Nb δϕi + 2b
∑
j

δϕj. (S14)

Here again we set si := cos(ϕi − ψ) = ±1 and let n± denote the numbers of oscillators with

si = ±1. The matrix form of these linearized equations is

δϕ̇ = J δϕ :=
[
aSHS − (a trS)S + 2bH − (2b tr 1)1

]
δϕ, (S15)

where the matrices S, H , and 1 are defined as before. This Jacobian matrix differs from the

Kuramoto Jacobian, which now we denote Ja, by its last two terms. Importantly, we have

JaH = aSHSH − (a trS)H = 0 (S16)

because HSH = ( trS)H . It follows that all cross-terms vanish in any binomial expansion:[
J + (2b tr 1)1

]n
=
[
Ja + 2bH

]n
= Jna +

[
2bH

]n (S17)

for all integers n. Applying these results in equation (S10) then shows that

[
J + (2b tr 1)

]3 − (a tr 1)
[
J + (2b tr 1)

]2
− (a trS)2

[
J + (2b tr 1)

]
+ (a trS)2(a tr 1)1

= (a trS)2aH +
[
2bH

]3 − (a tr 1)
[
2bH

]2 − (a trS)2
[
2bH

]
. (S18)
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Each term on the right here vanishes if we multiply through by J . Meanwhile, the cubic

polynomial on the left is the same one from the Kuramoto case, with its argument shifted by

J 7→ J + (2b tr 1)1. It factors in the same way as before to give the minimal polynomial

J
[
J + (2b tr 1− a tr 1)1

][
J + (2b tr 1− a trS)1

][
J + (2b tr 1 + a trS)1

]
= 0 (S19)

for the present model. The non-zero eigenvalues of the Kuramoto models are therefore all

shifted by the same amount, giving λ0 = 0, λ∗ = (a−2b)N , and λ± := ±(n+−n−)a trS−2Nb.

These are all negative as long as 2b > a, the same condition that governs the HKB model for

dyadic coordination. Our model is multistable when its parameters satisfy this condition.

Additional triadic dynamics

Here we provide in Fig S9 two additional variations of the simulated triadic dynamics shown

in Fig 6B. Fig S9A shows what happens when all three oscillators have the identical coupling

style, i.e. a1 = a3 = a4 and b1 = b3 = b4 (keeping the same mean coupling strength as

Fig 6B and C). With the symmetry completed restored (in contrast to Fig 6C where only the

symmetry between agent 3 and 4 is restored), not only the “bumps” in φ34 are gone but also the

metastability altogether (at least at the observable time scale). This further illustrates the role of

symmetry breaking in understanding the single-trial dynamics.
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Fig S9. Simulated triadic coordination with (A) a1 = a3 = a4 = 0.4033 and (B) varying
natural frequency ω3.

Fig S9B shows what happens when agent 3’s natural frequency is not constant. A main clue

suggesting a non-constant natural frequency is the increasing size of “bumps” in φ34 observed

in the human behavior (see Fig 6A, the bump in yellow line at 15s was smaller than the one at

25s, and even smaller than the one at 37s) which was accompanied by growing length of the

dwells in φ13 (red trajectory in Fig 6A has three periods of flattening, each one longer than the

previous one). This could simply mean that agent 3’s “natural frequency” was moving towards

agent 1’s and away from agent 4’s. In the model, the natural frequencies of agent 1 and 4

are 1.57 and 1.45 Hz respectively. We simply let ω3 increase linearly from 1.2 Hz to 1.7 Hz,

instead of being constant (i.e. 1.375 Hz for Fig 6BC and S9A), over the course of the trial. The

resulted dynamics is shown in Fig S9B. We see the dwells of φ13 (red line flattening around 7,

17 and 32s) are getting longer over time as the bumps in φ34 (yellow line) grow (the last bump

grows out of itself at 37s and leaves inphase). In fact, at the end of the last dwell (around 37s)

φ13 is no longer metastable in the original sense but begins to oscillate around inphase φ = 0,

whereas φ34 takes its place at that time and becomes metastable (i.e. after 37s yellow line starts
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wrapping).

Gradually increasing natural frequency of agent 3 (ω3) creates two subtle effects in addition

to the increasing bump size. The first has already been hinted at that a gradual change of

parameter can cause φ34 to suddenly leave inphase (∼ 37s yellow line in Fig S9B). In the

human trial (Fig 6A), φ34 had also, after the third bump, left inphase (37s). The difference

is that the humans left for antiphase, instead of becoming metastable as for our simple model

assuming linearly increasing natural frequency. This suggests that there was, unsurprisingly,

more interesting adaptation going on in human movement frequency than just a linear ramping.

Another subtle effect is of the same flavor but is concerned with what happens before φ34 began

to dwell at inphase. In the human trial, φ34 decreased for almost one cycle before it stopped

at inphase (0-10s yellow line in Fig 6A). This is not the case with constant frequency (Fig 6B,

yellow line, φ34 immediately increases to inphase after the beginning of the trial), but it is

the case with varying frequency (Fig S9B, yellow line, 0-5s). All these show by a very simple

example how gradual adaptation in natural frequency may cause sudden changes in coordination

patterns.

A note on metastability

For intuition, let us assume that there are N oscillators in a stationary organization defined

by N − 1 relative phases, each of which remains near inphase, near antiphase, or wrapping,

giving us S = 3N−1 different stationary patterns for our model (S = 2N−1 for the Kuramoto

model because of the lack of antiphase). Now if we look at patterns as sequences of metastable

dwells, we could have M =
∑S

l=1
S!

(S−l)! patterns of various period l (with non-repeated spatial

configurations in sequence). These of course are not all necessarily reachable by a system,

which in itself is an interesting theoretical problem, but still the repertoire M is much greater

than S. This thought experiment shows how metastability contributes to biological complexity
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in a very significant way.

Design of the human experiment

The human experiment (24) was performed by a total of 120 subjects in 15 ensembles. Each

ensemble completed 18 trials (6 trials for each condition δf = 0, 0.3 and 0.6 Hz) of interaction

in a complete network, except one ensemble for which only 7 trials (2 for δf = 0 Hz, 2 for

δf = 0.3 Hz, and 3 for δf = 0.6 Hz) were completed due to equipment malfunction. This

yields 86 trials for δf = 0 Hz, 86 trials for δf = 0.3 Hz, and 87 trials for δf = 0.6 Hz. See (24)

for additional details.
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